V Всероссийская научная конференция для молодых ученых, студентов и школьников «Актуальные вопросы биомедицинской инженерии»

Министерство образования и науки Российской Федерации Саратовский государственный технический университет имени Гагарина Ю.А.

АКТУАЛЬНЫЕ ВОПРОСЫ БИОМЕДИЦИНСКОЙ ИНЖЕНЕРИИ

Сборник материалов V Всероссийской научной конференции для молодых ученых, студентов и школьников

> Москва ПРОНДО 2015

Ответственный редактор:

Заслуженный деятель науки РФ, доктор технических наук, профессор кафедры «Физическое материаловедение и биомедицинская инженерия» Саратовского государственного технического университета имени Гагарина Ю.А.

В.Н. Лясников

А 43 Актуальные вопросы биомедицинской инженерии: сборник материалов V Всероссийской научной конференции для молодых ученых, студентов и школьников. 26 октября – 15 декабря 2015 г. – М.: Прондо, 2015. – 250 с.

ISBN 978-5-9907885-4-1

В сборнике представлены материалы V Всероссийской научной конференции для молодых ученых, студентов и школьников «Актуальные вопросы биомедицинской инженерии», проходившей с 26 октября по 15 декабря 2015 г. в Саратовском государственном техническом университете имени Гагарина Ю.А. в соответствии с приказом СГТУ № 978-П от 28.10.2015.

Основными целями проводимой конференции были выявление и развитие у ее участников творческих способностей и интереса к изучению междисциплинарного направления науки — биомедицинской инженерии, создание условий для выявления одаренной и талантливой молодежи с целью ее дальнейшего интеллектуального развития и профессиональной ориентации.

Сборник предназначен для широкой аудитории читателей, в частности школьников, студентов, аспирантов, магистрантов, молодых ученых, интересующихся современными проблемами биомедицинской инженерии.

Организационный комитет:

проф. Лобачева Г.В., проф. Лясникова А.В., проф. Гороховский А.В., проф. Лясников В.Н., проф. Фетисов Г.П., проф. Елинсон В.М., проф. Лепилин А.В., проф. Каменских Т.Г., проф. Вениг С.Б., проф. Безручко С.П., проф. Скрипаль А.В., проф. Перинский В.В., доц. Суетенков Д.Е., проф. Булкина Н.В., проф. Агапов В.В., проф. Масляков В.В., проф. Зимняков Д.А., доц. Дударева О.А. (отв. секретарь).

Ответственность за содержание и достоверность сведений, представленных в материалах конференции, сохранение корпоративной и государственной тайн возлагается на авторов.

> УДК 573.6; 57.089:616-7; 616-089.843; 573.6.086.83 ББК 28.0; 30.3

- © Саратовский государственный технический университет имени Гагарина Ю.А., 2015
- © Авторы статей, 2015

СОДЕРЖАНИЕ

ОБНАРУЖЕНИЕ И ЛОКАЛИЗАЦИЯ МЕТАЛЛИЧЕСКИХ ОСКОЛКОВ В	
ПОЛЕВЫХ УСЛОВИЯХ	
А.В. Лавренченко	7
А.В. Лавренченко	
НАНОКРИСТАЛЛИЧЕСКИМ ПОКРЫТИЕМ ГИДРОКСИАПАТИТА ДЛЯ	
УЛУЧШЕНИЯ АНТИКОРРОЗИОННЫХ СВОЙСТВ IN VITRO	
Т.М. Мухаметкалиев	.11
ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ СПОСОБА	
ВНУТРИКОРНЕВОГО АРМИРОВАНИЯ РЕСТАВРИРОВАННОГО	
ЭНДОДОНТИЧЕСКИ ЛЕЧЕНОГО ЗУБА	
В.С. Сенькин, О.А. Шляпникова, Н.О. Бессуднова, Е.Е. Ципоруха	16
ВЛИЯНИЕ ТИПОВ ЗАМЕЩЕНИЯ ГИДРОКСИАПАТИТОВЫХ ПОКРЫТИЙ	
НА СТЕПЕНЬ ИХ ГИДРОФИЛЬНОСТИ	
А.В. Лясникова, О.А. Маркелова, О.А. Дударева, А.В. Сабирова, М.В. Загибашев	22
КОМБИНИРОВАННАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ	. 44
НАНОСТРУКТУРИРОВАННЫХ ПЛАЗМОНАПЫЛЕННЫХ ПОКРЫТИЙ	
·	
МЕДИЦИНСКИХ ИЗДЕЛИЙ И ИХ ЭКСПЕРИМЕНТАЛЬНОЕ	
ИССЛЕДОВАНИЕ	20
И.П. Гришина, А.В. Лясникова, А.В. Лепилин, О.А. Маркелова	. 20
СИСТЕМА ДЛЯ ПЕРСОНИФИЦИРОВАННОЙ ПРОФИЛАКТИКИ	
производственно-обусловленных и профессиональных	
ЗАБОЛЕВАНИЙ	2.1
А.Н. Варнавский	. 31
РЕНТГЕНОЗАЩИТНЫЙ МАТЕРИАЛ ИЗ ОТХОДОВ ПРОИЗВОДСТВ	
инициирующих взрывчатых веществ	
Я.А. Яковлев, Е.А. Виноградова (Ялмурзина), В.В. Пирогова, А. Ж. Джахьянова	. 34
КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ АДГЕЗИВНЫХ СОЕДИНЕНИЙ	
РЕСТАВРАЦИОННЫХ КОНСТРУКЦИЙ ЗУБА И ОЦЕНКА ИХ	
СОСТОЯНИЯ СОГЛАСНО КРИТЕРИЯМ USPHS	20
О.А. Шляпникова, В.С. Сенькин, Н.О. Бессуднова	.38
ИССЛЕДОВАНИЕ СТРУКТУРЫ ГИБРИДНЫХ БИОКОМПОЗИТОВ НА	
ОСНОВЕ ОКСИДНЫХ ТИТАНОВЫХ НАНОТРУБОК И	
КАЛЬЦИЙФОСФАТНЫХ ПОКРЫТИЙ	
Р.В. Чернозем, М.А. Сурменева	.46
ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК	
титановых скэффолдов, приготовленных электронно-	
ЛУЧЕВЫМ ПЛАВЛЕНИЕМ	
Е.А. Чудинова	.50
гидрогели биомедицинского назначения на основе	
ПРОДУКТОВ ВЗАИМОДЕЙСТВИЯ ХИТОЗАНА С ЯНТАРНОЙ КИСЛОТОЙ	
Е.А. Кузнецова, А.А. Базунова	.55
ОЦЕНКА ГЕНЕТИЧЕСКОЙ СТАБИЛЬНОСТИ ШТАММА BACILLUS	
SUBTILIS 1К ПОСЛЕ ЭКСПЕРИМЕНТАЛЬНОГО ПАССИРОВАНИЯ	
Р.Ф. Исанбаева, Р.Т. Матниязов, А.В. Цветкова	.60
ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ГРАНИЦ ВРЕМЕНИ,	
ОБЕСПЕЧИВАЮЩИХ НАИМЕНЬШУЮ ДИСПЕРСНОСТЬ ЧАСТИЦ	
АЭРОЗОЛЕЙ	
АВ Шабанова Н Л Гаврилов	65

УСТРОЙСТВО ДЛЯ ПРОСТРАНСТВЕННО-ВРЕМЕННОГО	
ОПРЕДЕЛЕНИЯ ЗОН СТОПЫ: ПЕРСПЕКТИВЫ РЕАЛИЗАЦИИ	
Э.А. Даминова, Т.В. Мирина	0
СВОБОДНО РАСПРОСТРАНЯЕМАЯ РЕАЛИЗАЦИЯ	
КАРДИОАЙГЕНОСКОПА НА БАЗЕ SCILAB	
Б.С. Аль-Барати, В.В. Исакевич, Д.В.Исакевич	4
ОЦЕНКА ЭФФЕКТИВНОСТИ ГЛЮКОСИМЕНСГРАММЫ	٠
A П. Боболичино	1
А.П. Бабашкина	1
ИЗ-ЗА РЕДКОЙ ВЫБОРКИ И ШУМА НАБЛЮДЕНИЙ	_
С.Н. Крылов	3
исследование смачиваемости та покрытии,	
СФОРМИРОВАННЫХ МЕТОДОМ ВЧ-МАГНЕТРОННОГО РАСПЫЛЕНИЯ	
НА БИОДЕГРАДИРУЕМОМ МАГНИЕВОМ СПЛАВЕ	_
Е.С. Мельников, М.А. Сурменева9	0
АНТИМИКРОБНЫЕ СВОЙСТВА ПОВЕРХНОСТНО-АКТИВНЫХ	
ВЕЩЕСТВ NOCARDIA VACCINII ИМВ В-7405, СИНТЕЗИРОВАННЫХ НА	
ПРОМЫШЛЕННЫХ ОТХОДАХ	
П.В. Никитюк	5
РАЗРАБОТКА ПРИБОРА ДЛЯ КОНТРОЛЯ ФУНКЦИЙ НОЧНОГО	
ЭНУРЕЗА У ЛЕТЕЙ	
М.В. Кувшинова	8
ВЛИЯНИЕ ФАКТОРОВ РОСТА И МИКРОЭЛЕМЕНТОВ В СРЕДЕ	
КУЛЬТИВИРОВАНИЯ ACINETOBACTER CALCOACETICUS ИМВ В-7241	
НА АНТИАДГЕЗИВНЫЕ СВОЙСТВА ПОВЕРХНОСТНО-АКТИВНЫХ	
веществ	
И.В. Савенко	2
БИОТЕХНИЧЕСКАЯ СИСТЕМА ПОЛИГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ	_
С ИСПОЛЬЗОВАНИЕМ ЭЭГ СИГНАЛА	
Е.М. Талеб, Р.В. Исаков	0
KINHAP VILEN O I DOUBLE AND COMPANY AND CO	
на воздухопроницаемость материала на основе	
вискозного волокна	_
О.Д. Шакирова11	0
ФОРМИРОВАНИЕ СТРУКТУРЫ КОМПОЗИТА НА ОСНОВЕ	
ПОЛИТЕТРАФТОРЭТИЛЕНА ПРИ ВЗРЫВНОЙ ОБРАБОТКЕ	
П.Ю. Дробот, А.А. Кумарова11	3
АНТИМИКРОБНОЕ ДЕЙСТВИЕ ПОВЕРХНОСТНО-АКТИВНЫХ	
ВЕЩЕСТВ ACINETOBACTER CALCOACETICUS ИМВ B-7241	
НА НЕКОТОРЫЕ УСЛОВНО-ПАТОГЕННЫЕ БАКТЕРИИ	8
	_
Ц.В. Андрейко11	٥
Ц.В. Андрейко	
Ц.В. Андрейко	
 Д.В. Андрейко	
Ц.В. Андрейко	1
 Д.В. Андрейко	1
 Ц.В. Андрейко	1
 Д.В. Андрейко	1

ВОЗМОЖНОСТИ БИОТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ
РАСТЕНИЙ, ПРОДУЦИРУЮЩИХ АНТИГЕНЫ ВИРУСА ГЕПАТИТА В
Е.В. Морьева
НАНОСТРУКТУРИРОВАННЫЕ СИСТЕМЫ НА ОСНОВЕ
полимерколлоидных комплексов неионогенных
ПОЛИМЕРОВ С МИЦЕЛЛАМИ ЗОЛЯ AGI
Р.А. Мустакимов, Ф.Р. Гимаева
тепловизионный метод оценки достоверности
СООБЩАЕМОЙ ЧЕЛОВЕКОМ ИНФОРМАЦИИ
А.С. Новожилов, А.А. Овасян
ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ПЕЛЬТЬЕ В КОНСТРУКЦИИ АППАРАТА
ДЛЯ ПРОВЕДЕНИЯ ЛЕЧЕБНОЙ ЛОКАЛЬНОЙ ГИПОТЕРМИИ У
БОЛЬНЫХ С ПЕРИТОНИТОМ
К.О. Осипов, А.И. Сафронов
АКТУАЛЬНЫЙ ВОПРОС СОЗДАНИЯ БИОТЕХНИЧЕСКОЙ СИСТЕМЫ
УПРАВЛЕНИЯ ИНДИВИДУАЛЬНЫМ ЗДОРОВЬЕМ ДЕТЕЙ
О.А. Остапенко
моделирование оптических методов диагностики
С ПОМОЩЬЮ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ
Д.А. Петров
ИССЛЕДОВАНИЕ НАПРЯЖЕНИЯ КИСЛОРОДА В КРОВИ
М.А. Рогозина
пример имитационного моделирования замкнутои
ГЕМОДИНАМИЧЕСКОЙ СИСТЕМЫ
А.В. Рыгалова
СИСТЕМАТИЗАЦИЯ МЕТОДОВ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ
ГЛЮКОЗЫ КРОВИ НА ОСНОВЕ ЗАКОНА ИДЕАЛЬНОГО КОНЕЧНОГО
РЕЗУЛЬТАТА
Ю.Б. Сергеева, О.К. Абуладзе
ПРОБИОТИЧЕСКИЕ МИКРООРГАНИЗМЫ С ИММУНОМОДУЛИРУЮЩИМИ СВОЙСТВАМИ – ОСНОВА
ПРЕПАРАТОВ ИММУНОБИОТИКОВ
С.А. Старовойтова
неоднозначное восприятие состояния внутренних
ОРГАНОВ ПРИ УЛЬТРАЗВУКОВОЙ ДИАГНОСТИКЕ ТУЧНЫХ
ПАЦИЕНТОВ
Е.В. Стрыгина
медицине
А.Д. Сытченко
CARMAT
Л. Калем, Е.Ю. Торопылина
ЭЛЕКТРОСТИМУЛЯЦИОННЫЙ МИКРОТРЕНАЖЕР ДЛЯ ДЕТЕЙ С ДЦП
Н.А. Уварова
ПО БИОЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ МОЗГА В ЧС
А.П. Володин

БИОТЕХНОЛО	ЭГИЧЕСКИЕ	АСПЕКТЫ	получі	ЕНИЯ	ФАКТОРА
НЕКРОЗА ОП					
Е.В. Харченко					198
	ЧАСТОТЫ			ЕРХНЕГО	ПОРОГА
	ТИ МЕТОДОМ				
Д.Д. Цой, Е.А.	Хилько, Т.В. А	Арутюнян, Т.К.	Бородови	цына, А.Н.	Омельченко,
					203
	вы использо				
И.И. Шайхнуров	В				207 І АЛЬНОМУ
	ТЕРИАЛЬНОГ	О ДАВЛЕНИ	ІЯ ПС) ОПТИМ	ІАЛЬНОМУ
КРИТЕРИЮ		G G			210
К.Е. Швырева, Н	О.В. Суслова, Т.	С. Сюксина			210 НА ЖИВЫЕ
	і деиствия и	ЮНИЗИРУЮП	цих изл	учении і	на живые
ОРГАНИЗМЫ	TIO III	_			215
мех михом	і, т.ю. шувалова радимонейс	a			215 ІТИТЕЛ С
КЛЕТКАМИ –		LIBHA KATA	AJIMI MYE	ских ан	пител С
-					219
СИСТЕМ А	ПРОГНОЗИІ	опания	VPORH	я заг	219 Разигиия
	Х РАЙОНОВ Г		VI ODIII	<i>n</i> 3/11	1 MISHIELLIMM
					222
СОЗЛАНИЕ	БИОКОМПОЗИ	ипионных 1	ПОКРЫТІ	ий сза	ЛАННЫМИ
	И НА ДЕНТАЛ				
					225
ТЕХНОЛОГИЧ	НЕСКОЕ	ОБЕСПЕ	ечение		КАЧЕСТВА
ПЛАЗМОНАП	ЫЛЕННЫХ БИ	ОСОВМЕСТИ	мых по	КРЫТИЙ	
					230
	АНИЕ БИОМИМ				
	ОВ ЭНДОПРО				
ПОКРЫТИЯМ	И НА ОСНОВЕ	ЗАМЕЩЕНН	ЫХ ТРИК	АЛЬЦИЙФ	ОСФАТОВ
	А.В. Лясникова				
С.П. Шпиняк					244

ОБНАРУЖЕНИЕ И ЛОКАЛИЗАЦИЯ МЕТАЛЛИЧЕСКИХ ОСКОЛКОВ В ПОЛЕВЫХ УСЛОВИЯХ

А.В. Лавренченко

Научный руководитель: д.т.н., профессор В.В. Мирошников

Луганский государственный университет имени В. Даля, г. Луганск

Во время военных действий основными ранениями незащищенного мирного населения, а также военных, являются осколочные и пулевые ранения. Повреждающее действие осколками зависит от массы осколков, их формы, плотности, угла соударения. В зависимости от вида заряда, осколки могут быть ферромагнитными (сталь и сплавы) и неферромагнитными (алюминий, латунь).

Для выявления осколков разработана конструкция вихретокового преобразователя (ВТП), способного выявлять любые проводящие объекты в теле человека. На рис. 1 схематично показано расположение накладного ВТП над контролируемым осколком.

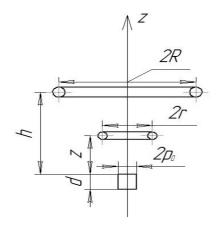


Рис. 1. Расположение накладного ВТП над контролируемым осколком

На нем R – радиус катушки возбуждения, r – радиус измерительной катушки, ρ_0 – эквивалентный радиус контролируемого осколка,

h – расстояние от обмотки возбуждения до плоскости, соприкасающейся с торцом осколка, d – высота осколка, z – расстояние от измерительной обмотки до торца осколка.

Учитывая сложную геометрическую форму осколков, расчет объекта поверхность ДЛЯ контроля, которого поверхностью второго порядка, а сам объект помещен в однородное Чем сильнее отличается форма осколка от магнитное поле [1]. сферической, тем меньше отклонение длин осей эллипса. Представим это отношение следующим образом. Отношение длин осей минимально в случае, если вектор \overline{H} лежит в плоскости тех двух осей осколка, раздельное намагничивание которых создает индуцированные магнитные моменты с наибольшим различием по фазе, а модули проекций вектора М на эти оси равны. Это имеет место, если угол между направлениями общей из осей осколка и вектором \overline{M} равен:

$$\alpha = arctg \frac{M_1}{M_2},$$

где M_1 , M_2 — амплитуды магнитных моментов при намагничивании осколка вдоль первой и второй осей в поле с напряженностью H; α - угол между направлением вектора \overline{H} и первой осью осколка.

Мгновенное значение модуля вектора М является функцией времени и определяется выражением:

$$\hat{I}(\omega t) = \sqrt{M_1^2 \cos^2 \alpha \sin^2 (\omega t + \varphi_1) + M_2^2 \sin^2 \alpha \sin^2 (\omega t + \varphi_2)}$$
,

где $\phi_1, \ \phi_2$ - пространственные составляющие магнитного момента, направленные вдоль соответствующих осей.

Функция \hat{I} (ωt) принимает экстремальные значения M_{\max} и M_{\min} при значениях ωt_1 и ωt_2 , для которых равна нулю первая производная \hat{I} (ωt) по аргументу ωt .

$$\omega t_1 = -\frac{\varphi_1 + \varphi_2}{2}$$
; $\omega t_2 = -\frac{\varphi_1 + \varphi_2}{2} + \frac{\pi}{2}$.

Минимально возможное для контролируемого осколка отношение длин осей эллипса, описываемого концом вектора индуцированного магнитного момента, определяется следующим выражением:

$$\frac{M_{\max}}{M_{\min}} = \begin{cases} \operatorname{ctg} \frac{|\varphi_{1} - \varphi_{2}|}{2}, npu|\varphi_{1} - \varphi_{2}| < \frac{\pi}{2}; \\ tg \frac{|\varphi_{1} - \varphi_{2}|}{2}, npu|\varphi_{1} - \varphi_{2}| > \frac{\pi}{2}; \\ 1, npu|\varphi_{1} - \varphi_{2}| = \frac{\pi}{2}; \\ 0, npu|\varphi_{1} - \varphi_{2}| = 0. \end{cases}$$

Таким образом, вторичное магнитное поле проводящего осколка, помещенного в однородное возбуждающее магнитное поле, является в общем случае эллиптически поляризованным вращающимся магнитным полем, степень которого зависит от формы, ориентации, электромагнитных параметров осколка.

Для расчета поля внутри осколка воспользуемся методом разбиения на N слоев объема осколка, в каждом слое вектор-потенциал находится вариационным способом. Для небольших относительных толщин ε = d/R с достаточной точностью можно считать вектор-потенциал внутри осколка не зависящим от z (т.е. можно считать N=1). Погрешность, возникающую при увеличении параметра ε при N=1, удобно оценивать для относительного вносимого сигнала, который запишем следующим образом:

$$Z_2 = j \frac{A_2}{A_1},$$

где вектор-потенциал A_1 соответствует холостому ходу (отсутствие под ВТП осколка) и вычисляется по формулам:

$$A_{1} = \frac{I\mu\mu_{0}}{2\pi\sqrt{\sigma k_{1}}} \left| \left(2 - k_{1}^{2}\right)K(k_{1}) - 2E(k_{1}) \right|; \ k_{1} = 2\sqrt{\frac{\delta}{\left(1 + \delta\right)^{2} + dc^{2}}}; \delta = \frac{r}{R}; dc = \frac{|z - h|}{R}.$$

Для расчета A_2 введем параметры:

$$\beta = R\sqrt{\omega\mu\mu_0\sigma}; d = \frac{|z+h|}{R}; d_1 = \frac{h}{R}; \xi = \frac{\rho_0}{R}.$$

Проведем расчеты по предложенной методике с целью выявления зависимости величины $|z_2|$ от параметра β . Результаты расчетов при $\epsilon=0,025$, $d_1=0,5$, N=1 при различных ξ и β приведены на рис. 2.

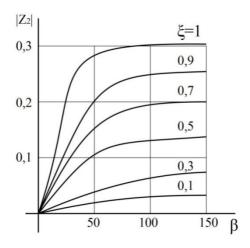


Рис. 2. Зависимость модуля относительного вносимого сигнала ВТП от обобщенного вихретокового параметра β и параметра ξ

Как видно, при больших значениях ξ , то есть когда диаметр осколка сравним с диаметром катушки возбуждения, сигнал достигает насыщения при значениях в от 30 до 40. Согласно приведенным зависимостям, BT Π , параметры онжом получить изменяя максимальную чувствительность к обнаруживающимся осколкам. Так, если осколок толщиной d = 1,5 мм, радиусом $\rho_0 = 1,5$ мм, удельной электрической проводимостью $\sigma = 18$ МСм/м, выбираем значения параметров $\beta = 100$, $h=10~{
m mm},~{
m z}=3~{
m mm}.$ Находим максимальное значение модуля ${
m Z}_2=0{,}04~{
m при}$ $\xi = 0,1$. Для приведенных значений радиус катушки возбуждения составляет $R = \rho_0/\xi = 15$ мм, частота питающего ВТП тока возбуждения по формуле $f = \frac{\omega}{2\pi} = \frac{\beta^2}{(R^2 2\pi u_0 \sigma)} = 312,7 \text{ к}\Gamma$ ц. Для проверки находится

результатов расчетов были проведены соответствующие эксперименты с амплитудно-фазовой схемой выделения сигнала.

Литература

1. Герасимов В.Г. Методы и приборы электромагнитного контроля промышленных изделий / В.Г. Герасимов, В.В. Клюев, В.Е. Шатерников. – М.: Энергоатомиздат, 1983. – 272 с.

БИОДЕГРАДИРУЕМЫЙ МАГНИЕВЫЙ СПЛАВ С ТОНКИМ НАНОКРИСТАЛЛИЧЕСКИМ ПОКРЫТИЕМ ГИДРОКСИАПАТИТА ДЛЯ УЛУЧШЕНИЯ АНТИКОРРОЗИОННЫХ СВОЙСТВ IN VITRO

Т.М. Мухаметкалиев

Научный руководитель: к.ф.-м.н., доцент Р.А. Сурменев

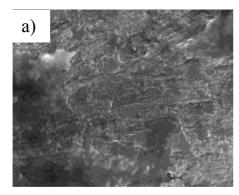
Национальный исследовательский Томский политехнический университет, г. Томск

В настоящее время магний и его сплавы привлекают огромное внимание ортопедов и ученых, так как магний имеет близкие с натуральной костью механические свойства, биорезорбируем и обладает биологической совместимостью. Однако высокая скорость резорбции магния ограничивает его использование в качестве материала для имплантатов [1, 2].

В данной работе проведены исследования морфологии, структуры и антикоррозионных свойств кальцийфосфатных (КФ) покрытий на магниевом сплаве AZ91. Главной целью являлось установление влияния КФ-покрытия, осажденного ВЧ-магнетронным распылением, на антикоррозионные свойства магниевого сплава AZ91. В качестве мишени

для распыления использовался гидроксиапатит (ГА), синтезированный механохимическим методом.

Морфология поверхности исследовалась с помощью сканирующей электронной микроскопии (СЭМ), оснащенной энергодисперсионной рентгеновской спектроскопией. Фазовый состав и структура КФ-покрытия исследовались на рентгеновском дифрактометре (Smartlab, Rigaku) в геометрии Брегга-Брентано с использованием монохроматического СиКα излучения (длина волны 1,5406 Å).


Молекулярные связи покрытия изучены при помощи инфракрасной (ИК) спектроскопии (Jasco FTIR-6300) с использованием кристалла, имеющего непрерывный спектральный диапазон 7800 – 550 см⁻¹.

Электрохимические исследования ГА покрытия, сформированного на сплаве магния, проводились с помощью потенциодинамической поляризации И импедансной спектроскопии В стандартной трехэлектродной ячейке с использованием потенциостат/гальваностата PARSTAT 4000 (Princeton Applied Research – AMETEK) в жидкости, имитирующей натуральную среду человека (simulated body fluid - SBF) [3]. Для всех измерений скорость сканирования составляла 1,0 MB/c. Температура поддерживалась В диапазоне $37\pm0.2^{\circ}C.$ Развертка электрохимической импедансной спектроскопии проводилась c амплитудой 5 мВ и частотой от 10^5 до 10^{-2} Гц.

Типичные СЭМ-изображения поверхности магниевого сплава AZ91 и ГА покрытия представлены на рисунке 1. На поверхности магниевого сплава наблюдаются плотноупакованные структуры наноразмерного масштаба. СЭМ-изображения (рис. 1) показывают, что покрытие является однородным, не содержит видимых дефектов, пор и микротрещин.

На рисунке 2 показаны характерные дифрактограммы образцов сплава AZ91 до и после осаждения покрытия. В случае подложек с покрытием помимо пиков, относящихся к сплаву магния, обнаружены

только пики ГА, указывающие на нанокристаллическую структуру покрытия. Никаких других высокотемпературных фаз, таких как β -трикальцийфосфат (β -TCP; Ca₃ (PO₄)₂), тетракальцийфосфат (TTCP; Ca₄(PO₄)₂O), или оксид кальция (CaO), не было найдено [4].

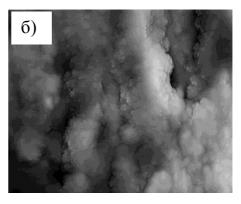
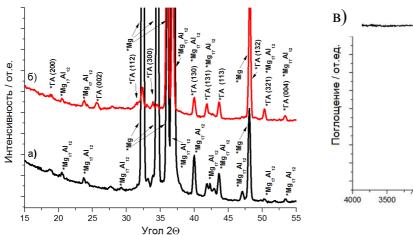



Рис. 1. СЭМ - изображение поверхности подложки магниевого сплава до (а) и после (б) нанесения ГА покрытия с увеличением 50 000

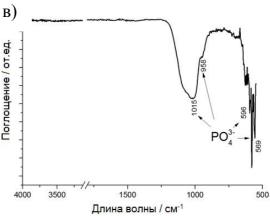


Рис. 2. Дифрактограмма сплава AZ91 без покрытия (а) и с ГА покрытием (б). Параметры решетки ГА: a=b=0,9452 нм; c=0,6952 нм, средний размер ОКР 25 нм. ИК-спектры для сплава с ГА покрытием (в)

Результаты ИК-спектроскопии для сплава с ГА покрытием показаны на рис. 3. Фосфатные группы обнаружены при 600 и 559 см⁻¹. Данное расщепление полос Р-О группы свидетельствует об упорядоченной структуре апатита.

Графики Тэфеля, полученные при исследовании сплава с ГА покрытием и исходного сплава AZ91 в SBF, показаны на рисунке 3. Электрохимические значения параметров поляризации представлены в таблице 1. Было отмечено, что потенциал коррозии ($E_{\rm corr}$) исходного сплава имеет значение -1,54 B, что ниже потенциала коррозии сплава с покрытием (-1,52). Значение плотности тока коррозии ($i_{\rm corr}$) сплава с покрытием (0,35 мАсм⁻²) значительно снизилось, по сравнению с исходным сплавом (80,88 мАсм⁻²).

Таблица 1 Параметры электрохимических экспериментов

Образец	E _{oc} (B)	E _{corr} (B)	i _{corr} (μA)	β _a (MB)	β _c (мВ)	R_p (κ Ω xcm ²)
AZ91	-1,57	-1,54	80,88	108,30	215,38	0,39
ГА покрытие	-1,66	-1,52	0,35	29,15	220,47	31,80

Потенциодинамический тест на поляризацию показал, что коррозионная стойкость исходного магниевого сплава была значительно улучшена.

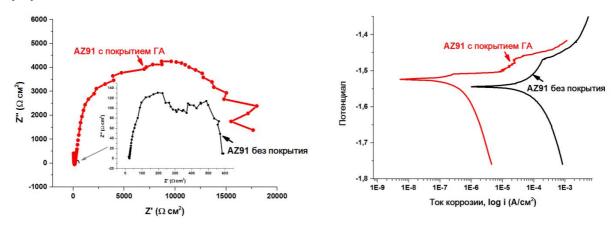


Рис. 3. Потенциодинамические кривые поляризации и импедансной спектроскопии исходного сплава и с покрытием ГА в растворе SBF

В данном исследовании было получено нанокристаллическое ГА покрытие на магниевом сплаве AZ91 методом ВЧ-магнетронного

распыления. Покрытие уменьшило плотность тока коррозии (i_{corr}) сплава с 80,88 до 0,35 мкА и увеличило сопротивление поляризации (R_p) более чем в 20 раз. Исходный магниевый сплав AZ91 значительно интенсивнее подвергся коррозионным разрушениям по сравнению со сплавом с образом, Таким сплав AZ91 c ГΑ покрытием. покрытием, ВЧ-магнетронного сформированным методом распыления, тэжом эффективно использоваться для снижения скорости деградации улучшения биосовместимости материала.

Исследование выполнено при финансовой поддержке РНФ №14-13-00274.

Литература

- Witte F. Degradable biomaterials based on magnesium corrosion /
 Witte [et al] // Current Opinion in Solid State and Materials Science. 2008.
 Vol.12. №5-6. P. 63-72.
- 2. Zheng Y.F. Biodegradable metals / Y.F. Zheng, X.N. Gu, F. Witte // Materials Science and Engineering: R: Reports. 2014. Vol. 77. P. 1-34.
- 3. Kokubo T. How useful is SBF in predicting in vivo bone bioactivity? / T. Kokubo, H. Takadama // Biomaterials. 2006. Vol. 27. –№15. P. 2907-2915.
- 4. Surmenev R.A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication / R.A. Surmenev // Surface and Coatings Technology. -2012. -Vol. 206. $-\text{N}_{2}\text{8}-9$. -P. 2035-2056.
- 5. Bohner M. Can bioactivity be tested in vitro with SBF solution? / M Bohner, J. Lemaitre // Biomaterials. 2009. Vol. 30. №12. P. 2175-2179.

ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ СПОСОБА ВНУТРИКОРНЕВОГО АРМИРОВАНИЯ РЕСТАВРИРОВАННОГО ЭНДОДОНТИЧЕСКИ ЛЕЧЕНОГО ЗУБА

В.С. Сенькин¹, О.А. Шляпникова², Н.О. Бессуднова^{1,2,3}, Е.Е. Ципоруха²

¹000 «Дента», г. Саратов

²Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, г. Саратов
³Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии, г. Москва

В настоящей работе построена с помощью САПР Solid Works 2010, «Solid Works Corp.» трехмерная компьютерная модель центрального резца верхней челюсти, включающая элементы твердых тканей зуба, поддерживающих его структур и реставрационной конструкции: дентин, цемент, периодонтальную связку, поддерживающие зуб костные структуры, стекловолоконный штифт, лютинговый цемент, адгезивную систему для фиксации штифта, реставрационный композиционный материал [1].

Используя построенную модель и пакет прикладных программ ANSYS 14, "ANSYS Inc", были проведены вариативные расчеты напряженно-деформированных состояний (НДС) восстановленных зубов для различных видов реставраций в условиях нормальной окклюзионной нагрузки. Методами численного эксперимента изучено влияние применения различных адгезивных технологий при фиксации армирующего элемента в корневом канале на функциональные характеристики реставрированного зуба.

При исследовании НДС полагалось, что альвеолярная кость, периодонтальная связка и корень зуба рассматривались как единая упругая буферная система, причем периодонтальная связка считалась более эластичной по сравнению с альвеолярной костью, практически не деформируемой под передаваемой внешней нагрузкой; остальные элементы реставрированного зуба полагались гомологичными, непрерывными и изотропными [1,2]. Значения физико-механических характеристик используемых материалов были взяты из достоверных и широко известных источников [1-7].

С целью имитации физиологического прикуса к модели прикладывались косо направленная нагрузка в 100 Н под углом 30° к вертикальной оси зуба [1-7] и вертикальная нагрузка той же амплитуды – в случае прямого прикуса [5].

Изучение НДС проводилось для двух видов стекловолоконных армирующих конструкций, зафиксированных различными адгезивными системами:

<u>Модель I</u>: реставрация проводилась с помощью стекловолоконного штифта, зафиксированного при помощи бонда *Single Bond (3MSPE)* и лютингового композиционного цемента *RelyX ARC (3MSPE)*.

<u>Модель II</u>: реставрация проводилась с помощью стекловолоконного штифта, зафиксированного на самоадгезивный лютинговый цемент *RelyX Unicem Self-Adhesive Universal Resin Cement (3MSPE)*.

Для проведения более полного сравнительного анализа адгезивных систем были получены картины распределения НДС реставрированного центрального резца верхней челюсти, армированного при помощи стекловолоконных штифтовых элементов, для двух видов приложения окклюзионной нагрузки — физиологического и прямого прикусов.

Модели исследовались опциями *Total Deformation* (полная деформация) и *Stress* (напряжения).

В случае прямой окклюзии результаты расчета позволили выявить существенную разницу в величинах полной деформации между моделями I и II.

Максимальные значения (I - 2,446*10⁻⁵ м, II - 1,582*10⁻⁵ м) прогнозируемо регистрируются на режущем крае зуба, затем неравномерно спадают в средней трети коронковой части (I – 1,359*10⁻⁵ м, II – 0,352*10⁻⁵ м), при этом оральная поверхность испытывает бо́льшие значения деформации.

Сохранившиеся ткани испытывают деформацию в районе шейки зуба ($I - 1,412*10^{-5}$ м, $II - 0,501*10^{-5}$ м), однако если в верхнем основании периодонтальной связки распределение носит равномерный характер, то в цервикальной области корневого цемента и дентина отмечаются повышенные значения с оральной стороны.

Наибольшие значения деформации армирующего элемента $(I - 1,564*10^{-5} \text{ м}, II - 0,661*10^{-5} \text{ м})$ локализуются в верхней половине штифтовой конструкции с максимумом на оральной стороне верхнего основания и равномерно спадают к апикальному отверстию зуба.

При физиологическом прикусе величины деформаций, возникающих в штифтовых конструкциях, изготовленных с применением стекловолокна, практически идентичны. Наибольшие значения деформации армирующего элемента ($I-2,433*10^{-5}$ м, $II-2,426*10^{-5}$ м) локализуются в верхней трети штифтовой конструкции, спадая к нижнему основанию ($I-1,074*10^{-5}$ м, $II-1,080*10^{-5}$ м).

В сохранившихся твердых структурах происходит перераспределение нагрузки в сторону вестибулярной поверхности зуба: максимальные значения ($I-3,351*10^{-5}$ м, $II-3,342*10^{-5}$ м) приходятся на контактные области с оральной стороны коронковой части зуба и верхнее сечение периодонтальной связки.

Анализ полученных значений напряжений для прямого прикуса показал отсутствие качественных различий между картинами распределения в моделях I и II: максимум напряжений ($I - 1,750*10^7$ Па, II $- 1,732*10^7$ Па) локализуется на оральной поверхности коронковой части между областями контакта и режущим краем зуба и постепенно спадает от центра к периферии (то есть к нижней части коронки с оральной стороны и покрывает режущий край — с вестибулярной).

Наибольшие значения напряжений в средней части коронки, контактных поверхностях, цервикальной области зуба и в нижней части корня характерны для модели II, тогда как режущий край, верхнее основание периодонтальной связки, а также верхняя и средняя трети корня имеют большие величины в модели I.

В цервикальной области сохранившиеся ткани зуба испытывают равномерно распределенные напряжения: дентин и корневой цемент – по внутреннему и внешнему периметрам, периодонтальная связка — на верхнем основании. Следует отметить, что с вестибулярной стороны верхней половины корневого цемента и дентина обнаруживаются множественные очаги повышенных нагрузок (I — 1,969*10 7 Па, II — 1,029*10 7 Па) в сравнении с остальным объемом данной области (I — 0,640*10 7 Па, II — 0,307*10 7 Па).

Верхняя часть штифтовой конструкции испытывает большие напряжения, перераспределенные на оральную поверхность армирующего элемента; при этом значения для моделей I и II сохраняют один порядок ($I-1,969*10^7 \Pi a$, $II-1,732*10^7 \Pi a$).

Специфической особенностью распределения напряжений в сохранившихся тканях и армирующих элементах моделей I и II в случае физиологической окклюзии является преимущественная локализация больших значений на вестибулярной поверхности (I – 19,465*10⁷ Па,

 $II - 20,229*10^7 \ \Pi a$), что, очевидно, объясняется характером приложения нагрузки для данного типа прикуса.

Большие напряжения с вестибулярной стороны периодонтальной связки и коронковой части зуба находятся в цервикальной области и нижней трети соответственно ($I - 3,243*10^7 \,\Pi a$, $II - 4,012*10^7 \,\Pi a$); тогда как в тканях корневого цемента — распространяются на всю верхнюю половину с вестибулярной и треть — с оральной стороны.

В верхнем основании стекловолоконного армирующего элемента максимальные напряжения ($I-2,163*10^7$ Па, $II-1,641*10^7$ Па) локализуются на оральной поверхности, в то время как для остальной части штифтовой конструкции – на вестибулярной.

Во всех рассмотренных областях модель II испытывает большие значения напряжений в сравнении с моделью I.

Исходя из полученных результатов, были сделаны следующие выводы:

В случае прикуса целесообразно прямого использование стекловолоконного штифта в сочетании с самопротравливающей композиционной системой RelyX Unicem Self-Adhesive Universal Resin Cement (3M ESPE), ввиду более благоприятного распределения НДС в сохранившихся тканях и армирующих структурах зуба; однако в цервикальной области реставрированного зуба как зоне наиболее вероятного возникновения фрактур напряжения в модели I значительно меньше таковых для модели II, что не позволяет однозначно указывать на преимущества самопротравливающей адгезивной системы и негативно оценить действие комбинированной пары «адгезив – композиционный лютинговый цемент» (модель I). В целом, полученные значения достаточно далеко границ находятся otпредела прочности стекловолоконного материала, что позволяет говорить о высоком уровне качества и прогнозировать продолжительный срок службы обоих видов реставраций.

При физиологическом прикусе целесообразно использование стекловолоконного штифта в комбинации с адгезивом и лютинговым композиционным цементом (модель I), так как значения НДС в этом случае качественно повторяют картину распределения в естественном дентине здорового зуба; кроме того, полученные для модели I величины меньше в особенно значимых зонах (цервикальная область зуба и армирующей конструкции) или практически равны таковым для модели II (корневая часть зуба, армирующая конструкция), что свидетельствует об улучшении качества реставрации и увеличении срока службы при использовании бонда и лютингового цемента как самостоятельных веществ.

Литература

- 1. Guang-Quan Song. Three-dimensional finite element stress analysis of post-core restored endodontically treated teeth / Song Guang-Quan. MS thesis. Winnipeg, 2005. 152 p.
- 2. Наумович С.А. Изучение напряженно-деформированных состояний в верхнем центральном резце, восстановленном с помощью различных стандартных штифтов, на основе метода конечно-элементного анализа / С.А. Наумович, Т.В. Крушинина, С.И. Богдан // Медицинский журнал. 2009. № 3. С. 259-261.
- 3. Бессуднова Н.О. Исследование механических характеристик адгезивных систем с наночастицами серебра / Н.О. Бессуднова, Д.И. Биленко, О.А. Шляпникова // Нанотехнологии и охрана здоровья. $2013. \text{T.V.} \text{N} \, 2/16. \text{C.} \, 10\text{-}18.$
- 4. De Castro Albuquerque R. Stress analysis of an upper central incisor restored with different posts / R. De Castro Albuquerque, L.T. De Abreu Polleto // Journal of Oral Rehabilitation. 2003. No. 30. P. 936-943.

- 5. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis / L. Pierrisnard, F. Bohin, P. Renault, M. Barquins // Journal of prosthetic dentistry. 2002. Vol. 88. No. 4. P. 442-448.
- 6. Меликян Г.М. Клинико-лабораторное обоснование реставрации дефектов режущего края передней группы зубов с применением сеточноармирующего элемента: дис. ... канд. мед. наук / Г.М. Меликян. М., 2008. 157 с.
- 7. Чиликин В.Н. Разработка алгоритма выбора современных материалов и технологий для реставрации зубов: автореф. дис. ... канд. мед. наук / В.Н. Чиликин. М., 2009. 50 с.
- 8. Mechanical Properties of Adhesive System with a Silver Nanoparticulate Filler: an Experimental Study / N.O. Bessudnova, D.I. Bilenko, S.B. Venig, O.A. Shlyapnikova // Proc. SPIE9031, Saratov Fall Meeting 2013: Optical Technologies in Biophysics and Medicine XV; and Laser Physics and Photonics XIV. 2014. –Vol. 90310I. P.1-10.

ВЛИЯНИЕ ТИПОВ ЗАМЕЩЕНИЯ ГИДРОКСИАПАТИТОВЫХ ПОКРЫТИЙ НА СТЕПЕНЬ ИХ ГИДРОФИЛЬНОСТИ

А.В. Лясникова, О.А. Маркелова, О.А. Дударева, А.В. Сабирова, М.В. Загибашев Научный руководитель: д.т.н., профессор А.В. Лясникова

Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов

Плазмонапыленные покрытия нашли широкое применение в различных отраслях жизнедеятельности человека, в том числе в медицине. С помощью технологии плазменного напыления формируют

биосовместимые покрытия на имплантаты различных конструкций и назначения [1].

В качестве материала для создания таких покрытий, как правило, применяются порошки гидроксиапатита (ГА), который является основной минеральной составляющей костей (около 50 % от общей массы кости) и зубов (96 % в эмали). Для улучшения остеоинтеграционных свойств имплантатов разрабатываются новые составы порошков и способы нанесения покрытий, в частности авторами разработана методология синтеза и плазменного напыления порошков магний-, цинк-, медькремний-, сереброзамещенных гидроксиапатитов [2-4].

Известно, что степень гидрофильности поверхности имплантата оказывает влияние на прикрепление остеогенных клеток к его поверхности. Данный факт связан с тем, что биологические жидкости организма (кровь, лимфа) являются по своей сути водными растворами [5,6].

Целью работы является исследование влияния составов напыляемых замещенных гидроксиапатитовых покрытий на степень гидрофильности полученных покрытий, а как следствие, на характер взаимодействия с прилежащими тканями.

Синтез металлсодержащих порошков производился в лаборатории кафедры ФМБИ СГТУ имени Гагарина Ю.А. Покрытие формировалось на образцах из титана марки ВТ1-0 размером $10 \times 10 \times 3$ мм².

Плазменное напыление производили на полуавтоматической установке УПН-28 при токе дуги для замещенных гидроксиапатитов — 350 A, скорости расхода транспортирующего газа — 5 л/мин, дисперсности порошка до 90 мкм, дистанции напыления до 5 мм, времени напыления — 5-7 с.

Для определения степени гидрофильности покрытия измеряли угол смачивания (θ_0) между касательной, проведенной к поверхности, смачиваемой водой и глицерином, и смачиваемой поверхностью.

Результаты экспериментальных исследований степени гидрофильности покрытий приведены в таблице 1.

Таблица 1 Значения краевого угла и поверхностной энергии замещенных ГА покрытий

Тип	Краевой угол,		Поверхностная энергия, мН/м				
покрытия	град						
	Вода	Глицерин	Полная	Дисперсионная	Полярная		
				составляющая	составляющая		
Титан	67,1	73,88	18,59	4,739	13,850		
исходный							
ГА	46,8	89,42	91,655	6,444	85,211		
Mg-ГА	30,8	62,88	77,287	0,006	77,282		
Zn-ΓA	46,2	85,84	81,595	4,198	81,793		
Cu-ΓA	32,8	72,16	86,293	1,026	85,267		
Si-ΓA	20,9	42,8	71,020	4,614	66,406		
Ag-ΓA	25,2	47,11	70,213	3,186	67,027		

Поверхностная энергия определяется преимущественно полярной составляющей, что свидетельствует о присутствии на поверхности полярных групп. Сравнительный анализ результатов для различных типов покрытий показал, что наибольшими показателями смачиваемости поверхности обладают покрытия на основе Si-ΓA – 20,9 град, Zn-ГА (46,2 град). наименьшими Также высокие показатели показали покрытия на основе серебро-, смачиваемости медь-, 25,2; 32.8: магнийзамещенных гидроксиапатитов: 30.8 град соответственно. При этом следует отметить, что все образцы с

напыленными покрытиями проявляют гидрофильные свойства ($\theta_0 < 90^{\circ}$). Значения контактных углов с водой для полученных покрытий лежат в пределах 20-60°, что согласно литературным данным является наилучшим показателем для поверхности имплантата [7].

Исследования показали, что биосовместимые покрытия на основе металлсодержащих гидроксиапатитов, полученные методом плазменного напыления, показывают достаточно высокую степень гидрофильности, что может благоприятно сказаться на остеоинтеграционном потенциале имплантатов с данными типами покрытий.

Исследование выполнено при финансовой поддержке грантов $P\Phi\Phi H$ в рамках научных проектов N_2 15-03-02767 а и N_2 16-08-01250 а, проектной части государственного задания в сфере научной деятельности N_2 11.1240.2014/K от 17.07.2014г.

Литература

- 1. Лясников В.Н. Плазменное напыление в промышленности и медицине: возможности, проблемы, перспективы: монография / В.Н. Лясников, А.В. Лясникова. Днепропетровск: ФОП Середняк Т.К, 2014. 924 с.
- 2. Properties of magnesium-substituted hydroxyapatite and the plasma coatings based on it / A.V. Lyasnikova, S.Y. Pichhidze, O.A. Dudareva, O.A. Markelova // Technical Physics Letters. 2015. Vol. 60. Iss. 11. P. 1725-1728.
- 3. Экспериментальное исследование антимикробной активности гидроксиаппатита и наночастиц металлов *in vitro* / С.П. Шпиняк, А.П. Барабаш, А.В. Лясникова, А.В. Шунова // Современные проблемы науки и образования. 2015. № 6. URL: http://www.science-education.ru/130-23099 (дата обращения: 26.11.2015).

- 4. Исследование свойств сереброзамещенного гидроксиапатита и биокомпозиционных наноструктурированных покрытий на его основе / А.В. Лясникова, В.Н. Лясников, О.А. Маркелова, О.А. Дударева, С.Я. Пичхидзе, И.П. Гришина // Медицинская техника. 2015. №5 (293). С.38-40.
- 5. Biomaterials science: an introduction to materials in medicine. 2nd edition / ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. San Diego: Elsevier Academic Press, 2004. 851 p.
- 6. Wettability of thin silicate-containing hydroxyapatite films formed by RF-magnetron sputtering / S.N.Gorodzha, M.A. Surmeneva, R.A. Surmenev et al. // Russian Physics Journal. 2014. Vol. 56. № 10. P. 1163-1169.
- 7. Webb K. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization / K. Webb, V. Hlady, P.A. Tresco // J. Biomed. Mater. Res. 1998. Vol. 241. P. 422-430.

КОМБИНИРОВАННАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ПЛАЗМОНАПЫЛЕННЫХ ПОКРЫТИЙ МЕДИЦИНСКИХ ИЗДЕЛИЙ И ИХ ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

И.П. Гришина, А.В. Лясникова, А.В. Лепилин, О.А. Маркелова Научный руководитель: д.т.н., профессор А.В. Лясникова

Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов

Плазменные технологии позволяют модифицировать поверхности различных материалов путем нанесения на них покрытий с защитными,

упрочняющими и другими свойствами. В имплантологии данная технология нашла широкое применение для создания покрытий, обладающих остеоинтеграционным потенциалом [1].

Технологический процесс формирования покрытий включает вакуумную камеру, генератор рабочего материала, средства энергопитания и охлаждения, автоматизации и механизации. Вакуумная камера обеспечивает специальную газовую среду, имеющую определенный химический состав, а также давление существенно ниже атмосферного. Генератор рабочего вещества формирует струю, которая подается на покрываемую поверхность основы.

Прочность сцепления плазмонапыленного покрытия с поверхностью зависит от действия сил механического типа, химического взаимодействия Ван-дер-Ваальса [2,3].Соединения, полученные счет механических взаимодействий и сил Ван-дер-Ваальса, обычно слабые. Поэтому при плазменном напылении покрытий следует обеспечить необходимые условия для протекания химических взаимодействий между материалом покрытия и изделия. Естественно предположить, что процесс взаимодействия атомов частиц в поверхности в немалой степени зависит от исходного состояния напыляемой поверхности, т.к. обычно такая поверхность загрязнена молекулами газа и воды, жирами, окислами и т.д. При наличии на напыляемой поверхности органических загрязнений более 1 мкг/мм² прочность сцепления покрытия может колебаться в широких пределах – от 10 до 50 кПа ($100-500 \text{ кгс/см}^2$).

Такая поверхность находится в состоянии термодинамического равновесия и, следовательно, не способна химически взаимодействовать. Создание на поверхности активных центров приводит к повышению химической активности этой поверхности. Активация напыляемой поверхности в промышленности обеспечивается её предварительной подготовкой [2]. При этом традиционные методы активации напыляемой

поверхности имеют ряд принципиальных ограничений и недостатков, что приводит к невозможности получить покрытия с высокими качественными показателями.

Новые возможности в решении задачи качества плазменных покрытий открывает использование газоразрядной среды. В отличие от обычной газовой среды газоразрядная имеет довольно сложный состав ионизированных и нейтральных частиц, включающих ускоренные электроны, атомарные и молекулярные ионы с различными зарядами, нейтральные атомы и молекулы. При этом процессы предварительной подготовки поверхности и плазменного напыления могут быть совмещены в общей камере с инертной средой, в результате чего будут исключены различные диффузионные процессы, происходящие при напылении и, следовательно, улучшено качество покрытия.

Опыты по исследованию прочности сцепления покрытия проводились на образцах цилиндрической формы диаметром 10 мм и длиной 40 мм из различных материалов: Мо, Ni, Cu, а также с порошками W, Ti, Mo. В качестве плазмообразующего, транспортирующего и защитного газов использовался аргон.

На рис. 1 представлены зависимости адгезии от скорости перемещения плазмотрона при различной силе тока активирующего дугового разряда низкого давления (материал образцов — Мо, порошка Ті). График 1 соответствует силе тока разряда 30 А, графики 2 и 3 — соответственно 20 и 10 А. Полученные результаты отмечены при следующих режимах плазменного напыления: ток дуги плазмотрона 500 А, расход плазмообразующего газа — 2 м³/ч, давление газа в рабочей камере — 8 кПа, расстояние от сопла плазмотрона до основы — 210 мм.

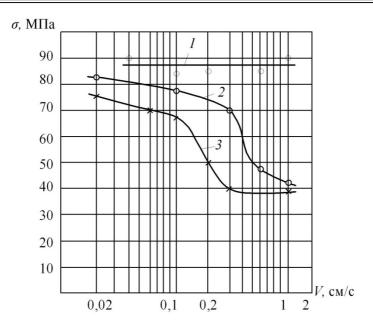


Рис.1. Зависимость адгезии от скорости перемещения плазмотрона при различной силе тока активирующего дугового разряда

Из представленных графиков видно, что при токе разряда 30 А адгезия покрытий практически не зависит от скорости перемещения плазмотрона. При токах 20 и 10 А наблюдается снижение прочности сцепления при увеличении скорости перемещения плазмотрона.

Активация импульсным дуговым разрядом может проводиться при большом количестве сочетаний значений параметров газового разряда.

На рис. 2 представлен график зависимости адгезии титанового покрытия с поверхностью образца от амплитудного значения импульсного дугового разряда. Длительность импульсов тока и пауз между ними выбиралась 0,02 с. Температура нагрева образцов в процессе напыления не превышала 300° С. На рис. 3 показана зависимость прочности сцепления покрытия от частоты импульсов тока при тех же условиях. Как видно из графиков, адгезия увеличивается до определенного предела с увеличением тока дугового разряда и частоты повторения импульсов.

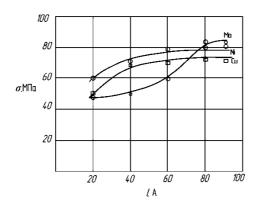


Рис. 2. Зависимость адгезии покрытия от силы тока

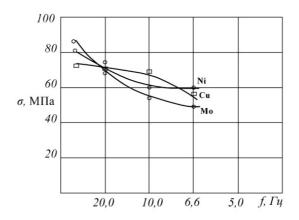


Рис. 3. Зависимость адгезии покрытия от частоты импульсов тока

Из графиков видно, что при обработке перед напылением поверхности импульсным дуговым разрядом и сравнительно невысокой температуре подогрева изделия (~ 200° C), прочность сцепления покрытия для исследованных материалов находится в пределах 30-50 МПа (300-500 кгс/см²).

Таким образом, технология активации поверхности, совмещенная с процессом плазменного напыления в одной установке, позволяет получить адгезионно-прочные покрытия для различных типов металлов, в том числе титана, наиболее часто используемого в имплантологии.

Исследование выполнено при финансовой поддержке грантов $P\Phi\Phi H$ в рамках научных проектов N_2 15-03-02767 а, N_2 16-33-60154 мол_а_дк и стипендии Президента $P\Phi$ для молодых ученых и аспирантов СП-289.2015.4.

Литература

- 1. Биосовместимые наноматериалы и композиционные покрытия на их основе для биомедицинской инженерии / И.П. Гришина, О.А. Дударева, О.А. Маркелова, А.В. Лясникова // Конструкции из композиционных материалов. 2013. №2. С. 22-28.
- 2. Гришина И.П. Совершенствование технологии и оборудования для напыления порошковых покрытий в производстве изделий машиностроения и электровакуумных приборов на основе концентрации плазменных процессов в одной рабочей установке : дис...канд. техн. наук: 05.09.10 / Гришина Ирина Петровна. Саратов, 2014. 154 с.
- 3. Нанесение покрытий плазмой / В.В.Кудинов, П.Ю. Пекшев, В.Е. Белащенко и др. М.: Наука, 1990. 408 с.

СИСТЕМА ДЛЯ ПЕРСОНИФИЦИРОВАННОЙ ПРОФИЛАКТИКИ ПРОИЗВОДСТВЕННО-ОБУСЛОВЛЕННЫХ И ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ

А.Н. Варнавский

Рязанский государственный радиотехнический университет, г. Рязань

Производственные условия зачастую являются негативными и увеличивают риск возникновения негативных функциональных состояний и заболеваний. Различают производственно-обусловленную заболеваемость и профессиональные заболевания.

Производственно-обусловленная заболеваемость - это заболеваемость общими заболеваниями различной этиологии, имеющая тенденцию к повышению числа случаев по мере увеличения стажа работы во вредных или опасных условиях труда и превышающая таковую в

группах, не контактирующих с вредными факторами. Профессиональное заболевание - это хроническое или острое заболевание работника, являющееся результатом воздействия на него вредных производственных факторов и повлекшее временную или стойкую утрату им профессиональной трудоспособности [1].

Целью работы является разработка системы для персонифицированной профилактики производственно-обусловленных и профессиональных заболеваний.

В качестве негативной производственной среды можно рассмотреть офисную среду, в которой работа является сидячей. В такой среде производственно-обусловленная заболеваемость проявляется «офисным синдромом», который служит для описания совокупности нарушений у работников сидячих профессий. Для примера количество заболеваний опорно-двигательной системы ежегодно растет и составляет от 8 до 13 % для офисных служащих. Также свойственны преждевременное старение (в среднем на десять лет раньше), серьезные метаболические сдвиги в организме, в результате которых не только происходит набор лишнего веса, но и страдают сосуды, зрение, позвоночник, а также могут развиться мышечно—скелетные боли в спине, шее, верхних конечностях, головные боли, синдром «компьютерной мыши», синдром «сухого глаза» и т.д.

Контроль состояния работника может быть основан на анализе его биоэлектрических сигналов. В качестве такого сигнала можно использовать кожно-гальваническую реакцию, анализ которой позволит оценить изменение психоэмоционального состояния [2], что особенно актуально, например, для работников умственного труда, работающих за компьютером.

Под профилактикой производственно-обусловленной заболеваемости понимается комплекс мероприятий, направленных на предупреждение развития или на ликвидацию (полную или частичную)

уже возникших неблагоприятных состояний. Пассивное восстановление предлагается использовать, если утомление наступило быстро. Аудиовизуальная коррекция – это применение аудио- и видеосигналов, которые направлены на релаксацию работника и уменьшение уровня стресса. Гимнастика для глаз должна запускаться периодически, например, каждые 40 мин, если у работника не наблюдается утомление. При наличии утомления, развившегося в течение длительного времени, необходимо использовать производственную гимнастику. В режиме борьбы со стрессом осуществляется аудиовизуальное воздействие на работника специальными звуковыми и световыми сигналами, позволяющими уменьшить психоэмоциональное напряжение [3].

В среде LabVIEW разработана программа контроля функционального состояния работника и формирования восстановительных процедур в зависимости от величины и динамики такого состояния.

Литература

- 1. Алексеев С.В. Гигиена труда: учебник для студентов санитарногигиенических факультетов медицинских институтов / С.В. Алексеев, В.Р. Усенко. М.: Медицина, 1988. 576 с.
- 2. Данилова Н.Н. Психофизиологическая диагностика функциональных состояний: учеб. пособие / Н.Н. Данилова. М.: МГУ, 1992. 192 с.
- 3. Варнавский А.Н. Автоматизированная система для устранения негативных функциональных состояний работников производства // Т-Сотт: Телекоммуникации и транспорт. 2015. Т. 9. №3. С. 71-75.

РЕНТГЕНОЗАЩИТНЫЙ МАТЕРИАЛ ИЗ ОТХОДОВ ПРОИЗВОДСТВ ИНИЦИИРУЮЩИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Я.А. Яковлев, Е.А. Виноградова (Ялмурзина), В.В. Пирогова, А. Ж. Джахьянова Научный руководитель: к.т.н., доцент А.М. Пыжов

Самарский государственный технический университет, г. Самара

В 2015 году исполнилось 120 лет с момента открытия немецким физиком Вильгельмом Конрадом Рентгеном неизвестного излучения, обладающего удивительным свойством проникать через тела и предметы, [1].Впоследствии, не пропускающие видимый свет честь первооткрывателя, неизвестное излучение было названо «рентгеновским излучением». Рентгеновские лучи быстро нашли свое применение в различных областях науки, техники и медицине. Однако применение рентгеновского излучения в медицине без надлежащей защиты может сопровождаться тяжелыми заболеваниями, аналогичными тем, которые возникают при у-облучении [2]. В связи с этим, разработка более эффективных и дешевых рентгенозащитных материалов и технологий их изготовления является по-прежнему актуальной задачей.

К стационарным средствам радиационной защиты, посредством которых обеспечивается безопасность работы в рентгеновских кабинетах, относятся стены, пол, потолок, защитные двери, смотровые окна, ставни и т.п. [3]. Стационарные средства защиты изготавливают из таких традиционных строительных изделий и материалов, как кирпич, бетон, баритобетон и баритовая штукатурка. Смотровые системы изготавливают из специального свинцового стекла, содержание оксида свинца в которых

достигает 70 % [4]. Наряду с металлическим свинцом, защитным действием обладают и его оксиды и соли [5].

Азид свинца и тринитрорезорцинат свинца (ТНРС) являются одними из основных инициирующих взрывчатых веществ (ИВВ), которые используются в России и за рубежом для изготовления средств инициирования процессов взрывчатого превращения.

Производства азида свинца и ТНРС сопровождаются образованием значительного количества свинецсодержащих отходов, основой которых является карбонат свинца [6,7]. Получаемые отходы складируют на открытых площадках промотходов. Студентами кафедры ХТОСА СамГТУ было установлено, что в отходах производств азида свинца и ТНРС содержится около 73 мас. % оксида свинца.

Оксид свинца широко используется для изготовления различного типа свинцовых стекол. Для введения в стекло РьО используют свинцовый глет (РьО) и свинцовый сурик (Рь₃О₄) [8]. Ранее на кафедре ХТОСА был разработан способ утилизации свинецсодержащих отходов производства азида свинца декстринового. Способ утилизации был основан на том, что свинецсодержащие отходы были использованы в качестве сырья для введения в состав свинцового (хрустального стекла) оксида свинца [9]. В данной работе была оценена возможность использования свинцового стекла в качестве вяжущего вещества при изготовлении блочных строительных изделий, которые могут быть использованы в качестве рентгенозащитного материала при изготовлении стационарных средств защиты рентгеновских кабинетов.

Промышленное производство блочных строительных изделий, например, стеновых кирпичей, состоит в обжиге в печи формовочной массы, состоящей из мелкого заполнителя, вяжущего материала и воды. В данной работе для изготовления керамических изделий в качестве заполнителя использовался речной песок, а в качестве вяжущего материала

- шихта свинцового силикатного стекла на основе свинецсодержащих промышленных отходов производств ИВВ и традиционных компонентов, применяемых в стеклоделии. Содержание отходов в исходной стекольной шихте составляло около 25-75 мас. %. Для придания необходимой формовочной прочности в керамическую шихту добавлялось небольшое количество промышленного жидкого стекла. Далее прессованием формовали цилиндрические образцы блоков, которые сушили, а затем обжигали в лабораторной печи при температуре 1000-1100 °C. После небольшой выдержки при максимальной температуре опытные блоки постепенно охлаждали в течение 15 часов. Полученные образцы блоков подвергались различным испытаниям. Результаты приведены в таблице 1. Для сравнения приведены характеристики материалов промышленных кирпичей – силикатного и глиняного.

Таблица 1 Характеристики образцов керамических блоков

Наименование	Удельная	Предел	Растворимость	Водопогло-
силикатного изделия	плотность,	проч-	в воде,	щение,
	г/см ³	ности при	%	%
		сжатии,		
		кгс/см2		
Красный кирпич	1,56	220	-	18,0
Силикатный	1,80	120 – 160	3,04	7,5
кирпич				
Эксперимен-тальный	1,65-1,80	100-120	2,0-3,0	11,0 – 12,5
силикатный блок				

Как оказалось, качество материала опытного керамического блока, содержащего 30-40 % свинцового стекла, соответствует качеству материала промышленного силикатного кирпича. Расчетным путем (по содержанию оксида свинца) была проведена оценка свинцового

эквивалента полнотелого кирпича, изготавливаемого из опытного материала. Оказалось, что свинцовый эквивалент опытного стандартного кирпича составляет 1,5 мм. В соответствии с действующими нормативами СанПиН 2.6.1.1192-03 эквивалентная толщина защитной стены из кирпичей (уд. плотность 1,8 г/см³) при напряжении на рентгеновской трубке 150 кВ будет составлять 380 мм (примерно 3 кирпича) [3, табл. 3, прил. 9], а в случае применения опытного изделия толщина будет составлять 240 мм (2 кирпича).

В результате проведенных исследований была показана возможность использования отходов производств свинецсодержащих взрывчатых веществ при изготовлении керамических кирпичей, качество которых соответствует действующим строительным нормам, а рентгенозащитные свойства превышают рентгенозащитные свойства промышленных кирпичей. Стеновые силикатных кирпичи, изготовленные керамического материала на основе свинецсодержащих отходов, могут быть применены для изготовления стационарных защитных стен, перегородок рентгеновских кабинетов в медицинских учреждениях.

Литература

- 1. Линденбратен Л.Д. Медицинская рентгенология / Л.Д. Линденбратен, Л. Б. Наумов. М.: Медицина, 1984. 322 с.
- 2. Лотош В.Е. Экология природопользования / В.Е. Лотош. Екатеринбург: Изд-во УрГУПС, 2002. – 540 с.
- 3. СанПиН 2.6.1.1192-03 «Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований», введены 01.05.2003. 14 с.
- 4. ООО «Ашамед Групп» / [Электронный ресурс] / Режим доступа: http://ashamedspb.ru/o-kompanii.html.

- 5. Быховская М.С. Методы определения вредных веществ в воздухе : в 2 ч. / М.С. Быховская, С.Л. Гинзбург, О.Д. Хализова. М.: Медгиз, 1960. Ч.1. 312 с.
- 6. Багал Л.И. Химия и технология инициирующих взрывчатых веществ / Л.И. Багал. М.: Машиностроение, 1975.- 456 с.
- 7. Илюшин М.А. Промышленные взрывчатые вещества. Ч. І. Инициирующие взрывчатые вещества : текст лекций / М.А. Илюшин, И.В. Целинский. СПб:. СПбГТИ(ТУ), 2001. 112 с.
- 8. Химическая технология стекла и ситаллов / М.В. Артамонова, М.С. Асланова, И.М. Бужинский и др.; под ред. Н.М.Павлушкина. М.: Стройиздат, 1983. 432 с.
- 9. Патент РФ № 2559941. Шихта для получения свинцового стекла / Пыжов А.М., Кукушкин И.К., Абрамов А.А. и др. Заявка № 2013150593/03 от 13.11.2013. Опубл. Бюл. № 23, 20.08.2015.

КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ АДГЕЗИВНЫХ СОЕДИНЕНИЙ РЕСТАВРАЦИОННЫХ КОНСТРУКЦИЙ ЗУБА И ОЦЕНКА ИХ СОСТОЯНИЯ СОГЛАСНО КРИТЕРИЯМ USPHS

О.А. Шляпникова¹, В.С. Сенькин², Н.О. Бессуднова^{1,2,3}

¹Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, г. Саратов
² ООО «Дента», г. Саратов

³Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии, г. Москва

Базовое исследование заключалось в визуальной диагностике и оценке состояния реставраций согласно рекомендациям международной

ассоциации дантистов (FDI) и Службы Здравоохранения Соединенных Штатов (United States Public Health Service – USPHS) (см. таблицу 1) [1].

Таблица 1

Система оценки состояния реставрации с использованием модифицированных критериев USPHS

Категория	Шкала оценок	Критерий
	Alpha - A	Реставрационная конструкция присутствует
Ретенция	Charlie - C	Реставрационная конструкция частично или полностью отсутствует
	Alpha - A	Отсутствует видимое нарушение краевого прилегания, выявляемое при зондировании
Краевое	Bravo - B	Имеется видимое нарушение краевого прилегания, выявляемое при зондировании
прилегание	Charlie - C	Имеется значительное нарушение краевого прилегания, при этом визуализируется дентин или основа реставрационного материала
	Delta - D	Реставрация подвижна, разрушена
	Alpha - A	Отсутствует изменение в цвете реставрационного материала
Изменение в цвете	Bravo - B	Имеется изменение в цвете реставрации, не выходящее за ее пределы
	Charlie - C	Имеется изменение в цвете реставрационного материала, выходящее за границы реставрации
	Alpha - A	Реставрационный материал полностью повторяет анатомическую форму зуба
Анатомическая	Bravo - B	Реставрационный материал не полностью повторяет анатомическую форму зуба
форма	Charlie - C	Значительная часть материала отсутствует вплоть до тканей дентина или основы реставрации
Вторичный	Alpha - A	Отсутствие кариеса вдоль границы реставрации
кариес	Charlie - C	Наличие кариеса вдоль границы реставрации

- В соответствии с указанными кодами все реставрации классифицируются на четыре группы [1]:
- 1. R (Romeo) отличного качества. К данной группе относятся реставрации, которые по всем параметрам классификатора характеризуются кодом «Alpha».
- 2. S (Sierra) приемлемого качества. Имеют незначительные дефекты и характеризуются наличием по крайней мере одного кода «Bravo».
- 3. Т (Tango) неприемлемого качества. Требуют замены из профилактических соображений с целью предотвращения дальнейшего разрушения твердых тканей. Реставрации, относящиеся к данной группе, характеризуются наличием по крайней мере одного кода «Charlie».
- 4. V (Victor) неприемлемого качества. Имеется повреждение твёрдых тканей зуба и/или окружающих тканей. Требуют немедленной замены. Характеризуются наличием по крайней мере одного кода «Delta».

Приведённые критерии оценки состояния реставрационных конструкций были применены при стандартном клинико-диагностическом обследовании пациентов на стоматологическом амбулаторном приеме и адаптированы при исследовании адгезивных соединений с применением методов цифровой видеодиагностики и низкокогерентной оптической компьютерной томографии.

Метод цифровой видеодиагностики заключается в получении профессиональных фотоснимков реставрационных конструкций высокого разрешения с последующей их цифровой обработкой [2-4].

Метод низкокогерентной оптической компьютерной томографии позволяет качественно и количественно определять наличие дефектов в объеме реставрационного материала и твердых тканей зуба [2-4], а также на границах их соединения, включая краевую дезинтеграцию и нарушения ретенции как частные случаи. Однако диагностировать изменение

реставрации в цвете, нарушение анатомической формы и наличие вторичного кариеса не представляется возможным. Поэтому при причислении реставрации к какой-либо группе (R, S, T или V) учитывались лишь категории «ретенция» и «краевое прилегание».

На рис. 1 приведены два примера реставраций, относящихся к группам Romeo (вверху) и Tango (внизу).

Следует заметить, что при клинической и цифровой оценках реставрации, представленной на рис. 1 (внизу), качество последней определялось как приемлемое (группа Sierra), а по данным ОКТ - как неприемлемое (группа Tango).

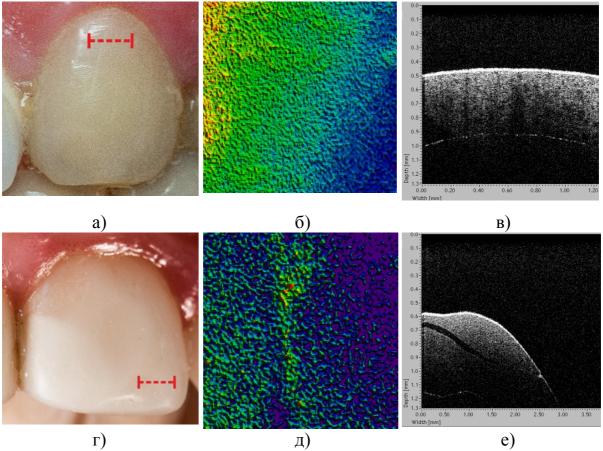


Рис. 1. Фотографии реставраций для видеодиагностики (а, г) с отметками участков, для которых приведены ОКТ-снимки (в, е) и их цифровая обработка (б, д). а - в – первый пациент со статусом пломбы «Romeo»; г – д - второй пациент со статусом «Sierra» по стандартному методу и «Тапдо» по ОКТ – снимкам

При окончательной классификации реставрационной конструкции, содержащей адгезивное соединение, следует выбирать код, соответствующий реставрации более низкого качества. Данный пример иллюстрирует необходимость применения совокупности клинических и дополнительных диагностических методов при оценке групповой принадлежности адгезивной реставрации.

Соответствующий результат можно наблюдать при рассмотрении итоговых статусов всех исследуемых объектов. В таблице 2 представлено процентное количество реконструкций для всех четырех групп (R, S, T и V) от общего числа исследуемых реставраций.

Таблица 2 Доля реставрационных конструкций, получивших соответствующий статус различными методами

	Метод	Oci	мотр	Видеодиагностика		ОКТ	
Стату	rc	стома	толога	Видеодиагностика		OKI	
мле	«Romeo»	14 %	70%	14 %	70 %	27 %	41 %
Приемле	«Sierra»	57 %	7070	57 %	70 70	14 %	41 70
Мое	«Tango»	25 %		25 %		41 %	
Неприемлемое	«Victor»	5 %	30 %	5 %	30 %	18 %	59 %

Стоит отметить, что увеличение процентного числа реставраций со статусом «Romeo», диагностированных по ОКТ-снимкам, обусловливается тем, что в данном методе не учитываются такие параметры, как окрашивание зоны соединения материалов, наличие кариеса и несоответствие анатомической формы реставрации. Именно эти параметры при первичном осмотре врачом-стоматологом повлияли на выбор

категории, отличной от «Romeo». В 18 % случаев стандартный метод обследования и видеодиагностика были более информативны, чем метод ОКТ. Однако изменение статуса реставраций на код с более низким качеством не привело к необходимости повторного лечения, так как оценки лежали в пределах приемлемого качества.

Более важным результатом сравнения методик является значительное увеличение числа реставраций, которые должны быть повторно подвержены восстановительному лечению или, что то же самое, имеют статус «неприемлемое качество». При исследовании дентинполимерных конструкций методом ОКТ в 41 % случаев было выявлено более низкое качество реставраций по сравнению с видеодиагностикой и стандартным методом обследования тех же элементов восстановленных тканей зуба.

Для более глубокого анализа полученных данных и выяснения причин выявленного феномена необходимо рассмотреть оценки реставраций по каждому из критериев отдельно.

В связи с тем, что в работе были рассмотрены реставрации только с высокой степенью ретенции, то по соответствующему критерию нет различий в полученных кодах для всех методов диагностики, т.е. все конструкции имеют код «Alpha». Значительных расхождений оценок по критериям «Изменение в цвете», «Анатомическая форма» и «Вторичный кариес» для стандартного метода обследования и видеодиагностики не наблюдается.

Самым слабым звеном реставрационной конструкции является адгезивное соединение твердых тканей зуба и композиционного материала. Оценка именно его состояния главным образом влияет на итоговый статус реставрации. В табл. 3 приведены коды, характеризующие только один критерий – краевую адаптацию реставрационного материала к твердым тканям зуба.

Заметим, что характер распределения оценок в табл. 3 схож с характером в табл. 2, что подтверждает важность данного критерия при рассмотрении состояния реставрации в целом. Однако, в отличие от общего случая (табл. 2), для оценки краевой адаптации не наблюдается увеличение числа конструкций с кодом «Alpha», а характерно значительное увеличение кодов «Charlie» и «Delta», что делает метод оптической компьютерной томографии наиболее информативным и достоверным.

Таблица 3
Процентное соотношение числа адгезивных соединений,
соответствующих определенным оценкам и методам, от общего
числа исследуемых реставраций при оценке краевого прилегания

Метод Код	Осмо стомато	•	Видеодиагностика		ОКТ	
«Alpha»	50 %	86 %	54 %	90 %	27 %	41 %
«Bravo»	36 %	00 70	36 %	<i>70 7</i> 0	14 %	71 /0
«Charlie»	9 %	14 %	5 %	10 %	41 %	59 %
«Delta»	5 %	11/0	5 %	10 /0	18 %	37 70

В 57 % случаев при анализе оценок краевой адаптации метод ОКТ показывает результаты, демонстрирующие более низкое качество дентин-полимерных соединений по сравнению с двумя другими методами, и ни одного обратного случая.

Таким образом, применение метода низкокогерентной оптической компьютерной томографии позволит получить принципиально новую информацию о состоянии восстановленных тканей зуба, пломбировочного материала и адгезивного соединения.

Совокупность стандартных клинических и дополнительных диагностических методов оценки состояния композиционных реставраций

и адгезивных соединений предоставит возможность достоверно оценивать качество реставраций, срок их службы и проводить лечение на более высоком уровне.

Литература

- 1. Ryge G. Standartization of clinical investigators for studies of restorative materials / G. Ryge, M.D. Jendresen, I. Major // Swedish dental journal. 1980. Vol.5. P. 225-239.
- 2. Применение низкокогерентной оптической компьютерной томографии для определения скрытых дефектов композитных реставраций in vivo / Н.О. Бессуднова, О.А. Шляпникова, Э.А. Генина, С.Б. Вениг // Материалы Всерос. науч. школы-семинара / под ред. Д.А. Усанова.-Саратов: Саратовский источник, 2014. С. 188-191.
- 3. Application of color image processing and low-coherent optical computer tomography in evaluation of adhesive interfaces of dental restorations // N.O. Bessudnova, O.A. Shlyapnikova, S.B. Venig et al. // Proc. SPIE 9448, Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics, 2015. Vol. 94480C. P. 1-6.
- 4. Изучение адгезивных соединений в реставрационной стоматологии: in vitro и in vivo эксперименты / О.А. Шляпникова, Н.О. Бессуднова, А.Н. Грибов и др. // Сборник материалов Всерос. молодежной науч. конф. 13-15 октября 2014 г. М.: Прондо, 2014. С. 14-20.

ИССЛЕДОВАНИЕ СТРУКТУРЫ ГИБРИДНЫХ БИОКОМПОЗИТОВ НА ОСНОВЕ ОКСИДНЫХ ТИТАНОВЫХ НАНОТРУБОК И КАЛЬЦИЙФОСФАТНЫХ ПОКРЫТИЙ

Р.В. Чернозем, М.А. Сурменева Научный руководитель: к.ф-м.н., доцент Р.А. Сурменев

Национальный исследовательский Томский политехнический университет, г. Томск

Целью работы являлось проведение исследования фазового и элементного состава, а также микроструктуры TiO_2 нанотрубок с Γ Апокрытием, осажденным ВЧ-магнетронным распылением.

На рис. 1 представлены СЭМ изображения аморфных TiO_2 нанотрубок, полученных при напряжении анодирования 30 и 60 В. Морфология TiO_2 нанотрубок после отжига не имеет существенных отличий по сравнению с нанотрубками, не подвергнутыми термическому отжигу [3]. Длина, внутренний диаметр и толщина стенок нанотрубок, полученных при напряжении 60 В, составили 1410 ± 60 , 98 ± 16 и 52 ± 26 нм, соответственно, а при напряжении 30 В 909 ± 50 , 53 ± 10 и 51 ± 11 нм, соответственно.

На рис. 2 представлены рентгенограммы TiO₂ нанотрубок, полученных при напряжениях анодирования 30 и 60 В с ГА-покрытием и без покрытия. На дифрактограммах видны линии металлического Ti вместе с линиями анатазной фазы оксида титана. Пик ГА зафиксирован при 32° двойного угла тэта для TiO₂ нанотрубок, полученных при напряжении 30 В. Остальные типичные рефлексы ГА накладываются на рефлексы анатаза и подложки Ti [2]. Структура анатаза благоприятна для

зарождения и роста ΓA , за счет схожести с кристаллической решеткой ΓA [1,2].

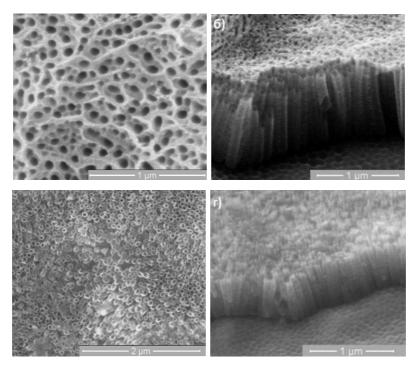


Рис. 1. СЭМ изображения TiO_2 нанотрубок, полученных анодным окислением Ti в NH_4F - содержащем электролите при времени анодирования 30 мин, напряжении 60 В (вид сверху – (а), вид сбоку - (б)) и 30 В (вид сверху - (в), вид сбоку - (г))

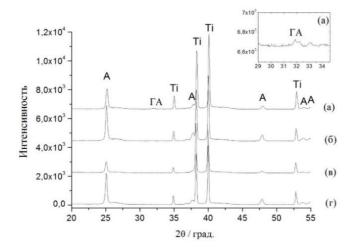


Рис. 2. Рентгенограммы TiO_2 нанотрубок с покрытием ΓA (при 30~B –(a), при 60~B – (б)) и без покрытия ((при 30~B –(в), при 60~B – (г)). На рисунке: А-анатаз, Ti-титан

В таблице 1 представлены количественные данные, полученные в результате анализа спектров высокого разрешения для регионов O1s, Ti2p, Ca2p, C1s и P2p.

Таблица 1 Относительные атомные концентрации химических элементов

		Относ	Относительные атомные концентрации (%)				
Тип	Напряжение	O 1s	Ti 2p	Ca 2p	C 1s	P 2p	Ca/P ratio
образца	анодирования,						
	В						
TiO ₂ +	30	44,0±0,8	_	20,7±0,5	14,4±1,5	20,8±0,3	1,01±0,02
ГА							
TiO ₂ +	60	45,9±0,1	_	21,3±0,8	10,2±1,6	22,6±0,9	0,94±0,01
ГА							
TiO ₂	30	47,5±1,6	24,8±0,5	_	24,9±0,6	_	_
TiO ₂	60	49,8±1,1	26,1±0,6		24,1±1,6		_

Рефлекс О 1s зарегистрирован при значениях энергии связи 531,0 и 531,3 эВ, которые свидетельствуют о наличии фосфатных (PO₄)³⁻ групп, ОН групп и CO₃²⁻ групп [3]. Пик Ca 2p3/2 также обнаружен при двух значениях энергии связи: 347,5 и 347,2 эВ, которые соответствуют Ca-O образованиям, т.е. Ca1 и Ca2 позиции ионов в атомарной структуре ГА [4-6]. Пик Р 2p3/2 обнаружен при двух значениях энергии связи, а именно энергии 133,2 эВ, соответствующей связи фосфора с кислородом в (PO4)³⁻ группе (структура ГА), и 132,5 эВ, соответствующей другим фосфорным связям, вероятно, органическим соединениям на поверхности [5,6]. Значения отношения Ca/P полученных ГА-покрытий существенно ниже стехиометрического отношения, характерного для ГА (1,67). Отсутствие сигналов Тi 2p свидетельствует о том, что TiO₂ нанотрубки полностью покрыты ГА при глубине РФЭС анализа 3-5 нм.

Результаты проведенных исследований позволили сделать следующие выводы:

- 1) Увеличение напряжения анодирования приводит к увеличению размеров TiO₂ нанотрубок и их средней скорости роста.
- 2) Отжиг полученных оксидных нанотрубок при 500 позволяет получать структуру анатаза, которая более благоприятна, чем структура рутила для образования ГА при осаждении.
- 3) Значения энергии связи для пиков Ca 2p3/2, P 2p3/2 и O 1s свидетельствуют о формировании ΓA (Ca₁₀(PO₄)₆(OH)₂). Данные результаты подтверждаются результатами P ΦA , которые свидетельствуют о наличии кристаллического ΓA .
- 4) При уменьшении диаметра нанотрубок увеличивается отношение Ca/P. Структура TiO₂ нанотрубок оказывает влияние на отношение Ca/P покрытий, полученных методом ВЧ-магнетронного распыления.

Авторы выражают благодарность Игнатову В.П. (Томский политехнический университет) и Краузе Б. (Технологический институт Карлсруэ) за помощь в проведении исследований. Исследование выполнено при поддержке ГЗ НАУКА (#11.1359.2014/K)

Литература

- 1. Structural dependence of apatite formation on titania gels in a simulated body fluid / M. Uchida, H.M. Kim, T. Kokubo et al. // J. Biomed. Mater. Res. 2003. Vol. 64. P. 164.
- 2. Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate / B. Feng, X. Chu, J. Chen et al. // J. of Porous Mater. -2010. -Vol.17. -P.453-458.
- 3. Titania nanotube porosity controls dissolution rate of sputter deposited calcium phosphate (CaP) thin film coatings / I. Mutreja, D. Kumar, A.R. Boyd, B.J. Meenan // RSC Adv. 2013. Vol. 3. P. 11263-11273.

- 4. XPS study of apatite-based coatings prepared by sol-gel technique / S. Kaciulis, G. Mattogno, L. Pandolfi et al. // Appl. Surf. Sci. 1999. Vol. 151. P. 1-5.
- 5. Landis W.J. X-ray photoelectron spectroscopy applied to gold-decorated mineral standards of biological interest / W. J. Landis, J.R. Martin // J. Vac. Sci. Technol. 1984. Vol. 2. P. 1108-1111.
- 6. Terra J. Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca / J. Terra, M. Jiang, D. E. Ellis // Philos. Mag. A. 2002. Vol. 82. P. 2357-2377.

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ТИТАНОВЫХ СКЭФФОЛДОВ, ПРИГОТОВЛЕННЫХ ЭЛЕКТРОННО-ЛУЧЕВЫМ ПЛАВЛЕНИЕМ

Е.А. Чудинова

Научный руководитель: с.н.с. М.А. Сурменева

Национальный исследовательский Томский политехнический университет, г. Томск

Титан и его сплавы получили широкое применение в качестве биомедицинского материала для замены костных тканей [1]. Несмотря на то, что титан имеет меньший модуль упругости по сравнению с нержавеющей сталью и сплавами на основе кобальта, тем не менее его значения гораздо выше, чем для кости. С целью улучшения данного эластичного несоответствия оптимальным решением является применение титановых сплавов с сетчатой структурой с улучшенной остеинтеграцией [2]. Применение электронно-лучевого плавления для создания сетчатых структур позволяет изготавливать компоненты с гораздо более низким

остаточным напряжением, а также не подвергать изделия термической обработке после их получения. Синтез пористых конструкций с необходимым комплексом свойств требует детального исследования закономерностей формирования физико-механических характеристик в зависимости от особенностей структуры. В связи с этим, данная работа посвящена исследованию влияния пористости различной морфологии на механическое поведение скэффолдов при активной деформации сжатием.

Материалом исследования послужили сетчатые скэффолды на основе титанового сплава ВТ6, приготовленные методом трехмерного прототипирования с использованием плавки электронным пучком на установке ARCAM A2 EBM® (Швеция) [3]. Для получения изображений матриц использован оптический микроскоп. Механические испытания на сжатие проводились с помощью машины Instron 3369.

Механическим исследованиям были подвергнуты 5 типов скэффолдов, представлявших собой непрерывную пространственную сетку, состоящую из систем тонких «проволочек» с диаметром сечения 0,1 мм. Размер скэффолдов составил $20\times20\times5$ мм³, размер ячеек варьировался от 1 до 5 мм (R1-R5) (рис. 1).

На рис. 2 представлены диаграммы напряжение— деформация сетчатой матрицы из сплава ВТ6 с разной структурой. Полученные данные приведены в таблице 1. Наибольшие истинные напряжения течения (предел прочности при 92,46 и 25,09 МПа) наблюдаются у образцов с более плотной сеткой (R1 и R2), минимальные (предел прочности 3,32 и 1,58 МПа, относительная деформация до разрушения 4,03 и 6,41 %) — у образцов, структура которых более пористая (R4-R5).

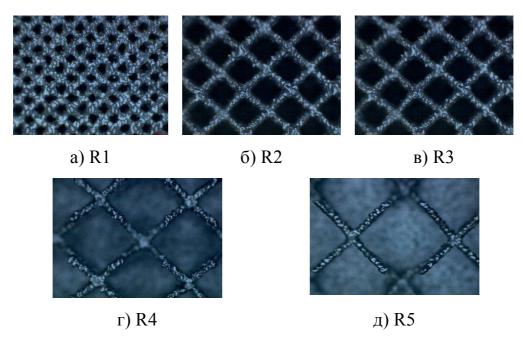


Рис. 1. Изображения трехмерных пространственных сетчатых структур

Увеличение объема пространства между сеткой приводит к появлению множественных микроповреждений в процессе деформирования. Этот процесс проявляется на диаграммах нагружения в виде падений напряжения вследствие микрорастрескивания (показано на рисунке стрелками).

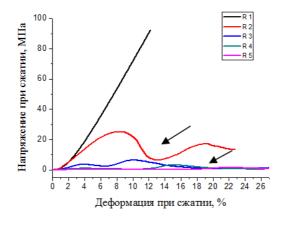


Рис. 2. Диаграммы деформирования образцов, приготовленных электронно-лучевым синтезом

При этом микротрещины останавливаются на поверхности сетки и материал восстанавливает способность сплава BT6 к упругому

деформированию. Наклоны кривых на стадии активного нагружения до появления микрорастрескивания изменяются в зависимости от величины пористости.

Фотографии скэффолдов с разным типом структур при испытании образцов представлены ниже. Скэффолд R2 подвергся незначительному разрушению, сетчатый образец R1 практически не был деформирован, внешне наблюдалось слабое сжатие.

Таблица 1

Тип образца	Максимальное	Модуль	Напряжение	Деформация
сплава титана	напряжение при	[ГПа]	при сжатии [%]	при сжатии [%]
	сжатии [МПа]			
R1	92, 46	930, 44	-	-
R2	25,09	432,61	25,09	8,56
R3	6,42	150,28	3,75	3,94
R4	3,32	37,72	0,96	4,03
R5	1,58	10,62	0,39	6,41

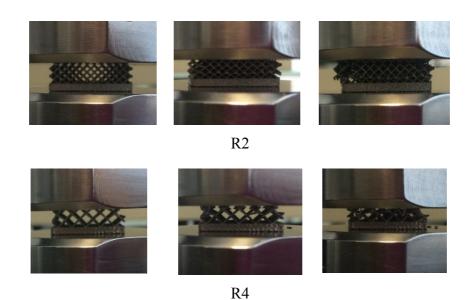


Рис. 3. Изображения скэффолдов с разным типом структур при испытании образцов на сжатие в испытательной машине Instron 3369

Было исследовано влияние пористости различной морфологии на механическое поведение скэффолдов при активной деформации сжатием. Скэффолд R5 претерпел наибольшую деформацию, максимальное напряжение при сжатии составило 1,58 МПа. Сетчатый образец R1 практически не деформировался, при этом максимальное напряжение при сжатии достигло 92,46 МПа.

Работа выполнена при финансовой поддержке РНФ (15-13-00043). Авторы благодарят А. Коптюга и П. Скогланд за помощь в создании скэффолдов.

Литература

- 1. Niinomi M. Recent metallic materials for biomedical applications / M. Niinomi // Metallurgical and materials transactions A 2002. Vol. 33. Iss. 3. P. 477-486.
- 2. Ryan G. Fabrication methods of porous metals for use in orthopaedic applications / G. Ryan, A. Pandit, D. P. Apatsidis // Biomaterials. 2006. Vol. 27. Iss. 13. P. 2651-2670.
- 3. Koptyug A. Multiscale surface structuring of the biomedical implants manufactured in Electron Beam Melting technology: demands, advances and challenges / A. Koptyug, L.E. Rännar, M. Bäckström // Proc. iCAT-2014, International Conference on Additive Technologies, Vienna, Austria, 15–17 October 2014. 2014.

ГИДРОГЕЛИ БИОМЕДИЦИНСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ПРОДУКТОВ ВЗАИМОДЕЙСТВИЯ ХИТОЗАНА С ЯНТАРНОЙ КИСЛОТОЙ

Е.А. Кузнецова, А.А. Базунова Научный руководитель: к.х.н., доцент М.В. Базунова

Башкирский государственный университет, г. Уфа

Известно, что благодаря биосовместимости, низкой токсичности, способности ускорять процессы регенерации кожи при заживлении ран, (ХТЗ) и его производные представляют особый интерес для хитозан медицины, стоматологии и косметологии [1]. Гелеобразные формы препаратов на основе XT3 обладают вязкой консистенцией, обеспечивают большую биодоступность, по сравнению с мазями лучше всасываются, антибактериальное имеют выраженное И фармакотерапевтическое действие. Подобные материалы могут быть использованы в качестве полимерных форм лекарственных средств, ранозаживляющих покрытий, остеопластических материалов для восстановления костной ткани челюстей после операции цистэктомии и др.

Наиболее распространенным способом получения гелей на основе XT3 и его производных является сшивание их макромолекул глутаровым альдегидом [2]. Однако, продукты взаимодействия глутарового альдегида с аминогруппами XT3 являются достаточно токсичными. Нами выбран подход к созданию упруговязких систем на основе водорастворимого производного XT3 — натриевой соли сукцинамида хитозана (СХТ3) — в отсутствии сшивающих агентов, заключающийся в формировании дополнительной сетки физических связей вследствие изменения термодинамического качества растворителя, а именно, замены воды

(термодинамически хорошего растворителя для СХТЗ) на смеси воды с этанолом, являющимся осадителем для СХТЗ.

О формировании геля в растворах полимеров можно судить по реологическим данным, например, по появлению предела текучести, или по наличию упругих характеристик у раствора полимера [3]. В связи с этим, **целью работы** стало изучение процессов гелеобразования водно-этанольных растворов СХТЗ с помощью реологических испытаний.

В работе использован XT3 со степенью деацетилирования 82 %, М.м.=80000 а.е.м. и характеристической вязкостью 7,8 дл/г (ТУ 9289-067-00472124-03) производства ЗАО «Биопрогресс» (г. Щелково, Россия).

Натриевая соль сукцинамида хитозана получена перемешиванием суспензии хитозана в дистиллированной воде с эквимолярным количеством янтарного ангидрида.

Реологические измерения водных и водно-спиртовых растворов СХТЗ проводили на модульном динамическом реометре Haake MarsIII при 25° C.

Известно, ЧТО ухудшение термодинамического качества растворителя по отношению к полимеру, вызванное различными причинами, должно приводить к возрастанию степени ассоциации макромолекул в растворе, так как контакты полимер-полимер становятся более вероятными, чем контакты полимер-растворитель [4]. Следовательно, от водных и водно-этанольных растворов СХТЗ можно ожидать формирование различной структурной организации полимера и иной флуктуационной сетки зацеплений макромолекул полимера.

Установлено, что растворы СХТЗ в смешанном растворителе этанол:вода характеризуются довольно существенным повышением динамической вязкости растворов полимеров во всём диапазоне изученных концентраций, которое тем больше, чем выше содержание в них спирта и полимера (рис. 1).

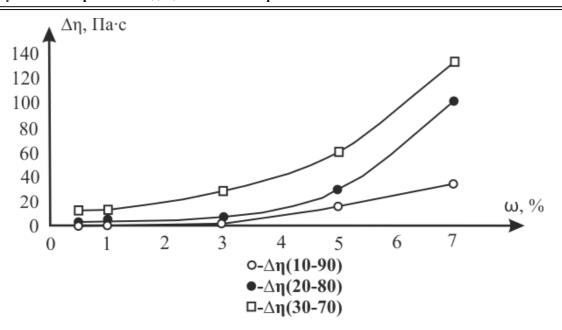


Рис. 1. Зависимость прироста динамической вязкости растворов СХТЗ в смесях этанол: вода по сравнению с растворами СХТЗ в воде от концентрации полимера

Причина наблюдаемого прироста вязкости может быть двоякой. Вопервых, это может быть обусловлено процессами структурообразования полимера В растворе. во-вторых, повышение вязкости спиртосодержащих растворов CXT3 может быть обусловлено свойствами самого растворителя, структурные ассоциаты которого в концентрированных растворах полимера образуют макрокластеры, существенно повышающие начальную вязкость системы. Действительно, динамическая вязкость смешанного растворителя этанол:вода в два раза от 1,0 до 2,0 мПа•с - повышается при увеличении содержания спирта до 30 %. Как следует из данных табл. 1, относительная вязкость растворов, отражающая вклад полимера в суммарную вязкость, повышается при введении спирта. Следовательно, повышение вязкости спиртосодержащих растворов СХТЗ обусловлено как свойствами самого растворителя, так и образованием флуктуационной сетки зацеплений макромолекул полимера.

Таблица 1 Относительная вязкость, Па, водных и водно-этанольных растворов СХТ3, $20\,^{\circ}\text{C}$

Растворитель	Концентрация СХТЗ			
	1 %	3 %	5 %	7 %
H ₂ O	323,28	2693,96	10775,86	42025,86
10-90	764,66	5097,70	21240,44	50127,44
20-80	2711,32	7177,03	26315,79	75757,58
30-70	4402,86	11007,15	85305,45	63291,14

Для определения соотношения вязких и упругих свойств растворов СХТЗ проведены реологические испытания в осцилляционном режиме. Установлено, что, во-первых, при превышении концентрации CXT3 в водном растворе более 5 % происходит образование гелевых систем, характеризующихся потерей текучести, что свидетельствует формировании прочной сетки физических межмолекулярных связей. При упругости превышает модуль вязкости. формирование сетки зацеплений в присутствии спирта начинается при значительно более низких концентрациях CXT3, чем в случае водных растворов полимера. Так, хорошо видно (рис. 2), что при концентрации СХТЗ 2 % мас. и выше значение модуля упругости водно-этанольных растворов выше значения модуля вязкости.

Более того, можно отметить (рис. 3), что чем больше содержание спирта в системе, тем больше вклад упругой составляющей в общий прирост вязкости. Таким образом, добавление спирта к раствору полисахарида будет способствовать формированию дополнительной сетки физических связей, что, несомненно, скажется на структуре, морфологии и топографии поверхности плёночных и объёмных материалов, полученных на основе изучаемых растворов.

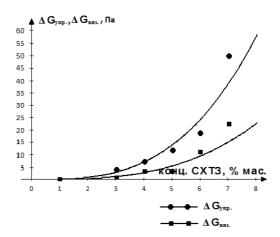


Рис. 2. Изменение прироста модуля упругости ($G_{\text{упр.}}$) и модуля вязкости ($G_{\text{вяз.}}$) растворов СХТЗ в смеси этанол-вода (20:80 % об.) по отношению к раствору СХТЗ в воде от концентрации полимера, 20 0 C , f=1 Гц

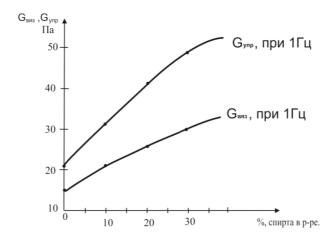


Рис. 3. Модуль упругости и модуль вязкости растворов СХТЗ концентрацией 6 % в смеси этанол-вода с разным объёмным содержанием этанола, 20^{0} С

Литература

1. Аминоглюканты в качестве биологически активных компонентов лекарственных средств (обзор за период 2000-2004 гг.) /А.И. Сливкин, В.Л. Лапенко, А.П. Арзамасцев, А.А. Болгов // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. — 2005. — № 2. — С. 73-87.

- 2. Структурообразование в растворах хитозана в присутствии сшивающего реагента при получении биологически активных полимерных материалов / П.А. Перминов, Н.Р. Кильдеева, Л.М. Тимофеева // Известия вузов. Химия и химическая технология. − 2007. − Т. 50. − №3. − С. 53-56.
- 3 Роговина Л.З. К определению понятия «полимерный гель» / Л.З. Роговина, В.Г. Васильев, Е.Е. Браудо // Высокомолекулярные соединения. 2008. Т. 50. № 7. С. 1397-1406.
- 4. Тагер А.А. Физико-химия полимеров / А.А. Тагер. М.: Химия, 1978. 545 с.

ОЦЕНКА ГЕНЕТИЧЕСКОЙ СТАБИЛЬНОСТИ ШТАММА BACILLUS SUBTILIS 1К ПОСЛЕ ЭКСПЕРИМЕНТАЛЬНОГО ПАССИРОВАНИЯ

Р.Ф. Исанбаева 2 , Р.Т. Матниязов 1 , А.В. Цветкова 2 Научные руководители: д.м.н. А.Р. Мавзютов 1 , к.б.н. Т.Н.Кузнецова 2

¹Башкирский государственный медицинский университет
Минздрава России, г. Уфа
²ООО НВП «БашИнком», г. Уфа

Одной из главных задач сельскохозяйственной биологии является разработка эффективных средств и способов снижения развития болезней растений. Широкое распространение заболеваний зерновых культур, вызываемых фитопатогенными грибами, наносит большой экономический урон сельскому хозяйству. Одним из эффективных биологических средств защиты растений являются бактерии рода *Bacillus*, поскольку они

обладают высокой антагонистической активностью против фитопатогенов грибов. Высокая биологическая активность является их отличительной особенностью. *Bacillus subtilis* имеют высокую изменчивость, что затрудняет их идентификацию по культуральным и биохимическим свойствам. Поэтому, для достоверного обнаружения *Bacillus subtilis* рекомендуется использовать молекулярно-биологические методы исследования, такие как ПЦР или RAPD – анализ.

Возможность обнаружения вариабельности различных организмов на уровне ДНК появилась с развитием ряда методов молекулярной биологии. В настоящее время для этих целей очень широко используется метод, известный как RAPD (Random Amplified Polymorphic DNA), заключающийся проведении ПЦР c использованием произвольных праймеров длиной 9-10 н.п. Для синтеза таких праймеров необходимости нет В знании конкретных нуклеотидных последовательностей генома исследуемой бактерии. При электрофоретическом разделении образуются дискретные продукты, размер которых варьирует от 100 до 5000 п.н. (ДНК - спектры). Эти участки представляют собой анонимную, как правило, уникальную последовательность ДНК, заключенную между двумя инвертированными повторами. Различия в ДНК – спектрах определяются в одном или обоих праймер – связывающих сайтах (наличие или отсутствие полосы ПЦР – продукта спектре) или присутствием инсерции/делеции В аплифицируемом фрагменте (различия ПЦР – продуктов по размеру).

В связи с этим метод, в основном, используется для изучения генетического полиморфизма у тех организмов, где гены не секвенированы и последовательности ДНК неизвестны. Показано, что метод RAPD может успешно использоваться для идентификации и дифференциации штаммов бактерий.

Цель исследования - оценить стабильность штамма бактерий Bacillus subtilis 1К после экспериментального пассирования.

В качестве материала использовали штамм Bacillus subtilis 1К, который перенес определенное количество пассажей на питательных средах. Bacillus subtilis №1 (коллекционная, депонирована ВКПМ ГосНИИ Генетика, г. Москва, 23.10.2012). Условия хранения – лиофилизация (1 пассаж). Bacillus subtilis №8 (Препарат «Фитоспорин» 2 последовательных пассажа в течение 2 вегетаций через огурцы (семена + 2 обработки в период вегетации до зрелого колоса)). Bacillus subtilis №12 (Препарат «Фитоспорин» + 2 последовательных пассажа в течение 2 вегетаций через пшеницу (семена + 2 обработки в период вегетации до зрелого колоса)). Bacillus subtilis №13 (3-4 пассажа на плотных питательных средах, 21.02.2014, «Исходная»).

В настоящей работе использовали сравнительно новые молекулярногенетические методы для идентификации и дифференциации производственного штамма Bacillus subtilis 1К (1, 8, 12, 13) до и после экспериментального пассирования. Идентификация представителей различных видов с помощью RAPD-анализа сейчас довольно широко используется в исследованиях, где таксономический ранг представителей еще недостаточно ясен или возникло множество неоднозначных данных.

Перед нами стояла задача продемонстрировать возможности данного метода для геномной идентификации близкородственных бактерий, а также подобрать произвольные праймеры и провести оптимизацию условий проведения полимеразной цепной реакции. Предполагалось, что полученная информация может быть использована не только для идентификации, но и для ДНК-паспортизации.

При проведении RAPD – анализа одним из важных моментов является подбор праймеров, которые должны давать воспроизводимые, стабильные, специфичные наборы RAPD – спектров. Нами было

подобрано 6 праймеров: ADE-1 5'-CGCTCACTGA-3', AFK-1 5'-ACGGTGGACG-3', AFK-3 5'- GCGTCCATTC-3', Lmbd8 5'-GGGCGCTG-3', Opa2 5'-CAGGCCCATC-3', FC-2 5'-CCCGGTTAGA-3'. Экспериментально подобрана оптимальная температура отжига - 28–30° С.

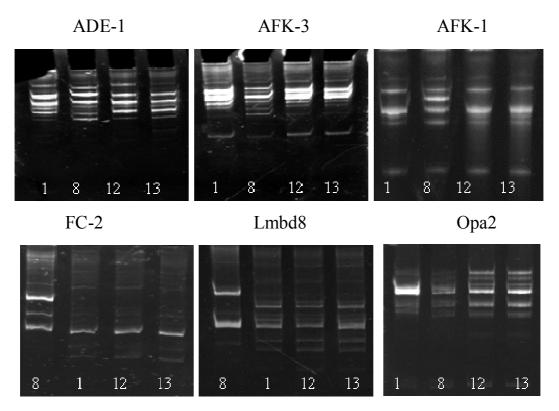


Рис. 1. Электрофореграммы результатов RAPD анализа участков ДНК штамма бактерий *Bacillus subtilis* в полиакриламидном геле

Были найдены отличия образца <u>№</u>8 других образцов, заключающиеся В отсутствии общих ПО электрофоретической подвижности фрагментов, но можно обнаружить в спектрах значительное число одинаковых фрагментов. В настоящей работе нам удалось обнаружить внутривидовую изменчивость бактерий Bacillus subtilis при сравнении их спектров ДНК до и после экспериментального пассирования. Так, найдены отличия по 2-3 фрагментам в спектрах ДНК образца №8 от образцов №1, №12, №13. Эти различия заключались не только в изменении интенсивности окрашивания отдельных фрагментов, но и в изменении спектра распределения фрагментов.

Подобранные праймеры для RAPD не показали качественную картину различия или сходства. Возможно, одной из причин является то, что изначально метод был разработан для поиска различия, и методика подбора праймеров была ориентирована больше для поиска различия, а большое сходство образцов привело к тому, что картина, полученная при RAPD, оказалась не очень информативной.

На основе данных анализа можно предположить, что образцы №1, №12, №13 имеют близкородственное происхождение или же являются производной одного штамма. По результатам видно, что образцы №1 и №12 скорее всего имеют общее происхождение, а образец №13 очень близок к ним, но имеет небольшие генетические изменения. Образец №8 имеет довольно отдаленное сходство с контрольным образцом, но в то же время имеет некое родство с образцом №13.

На данный момент точность и чувствительность современного оборудования достигла того порога, когда метод RAPD может получить широкое распространение для сравнения различных микроорганизмов. Сравнение на генетическом уровне позволит более точно идентифицировать и систематизировать, а также проводить сравнительный анализ различных микроорганизмов.

Выводы:

- 1. RAPD анализ позволяет проводить идентификацию видов бактерий *Bacillus subtilis* и при использовании широкого набора праймеров может дать полезную информацию для их таксономии.
- 2. После проведенного RAPD анализа можно утверждать, что образцы №1, №12, №13 имеют близкородственное происхождение или же являются производной одного штамма, образец №8 имеет далекое

отношение к другим образцам, но в то же время имеет некое родство с образцом №13.

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ГРАНИЦ ВРЕМЕНИ, ОБЕСПЕЧИВАЮЩИХ НАИМЕНЬШУЮ ДИСПЕРСНОСТЬ ЧАСТИЦ АЭРОЗОЛЕЙ

А.В. Шабанова, Н.Д. Гаврилов Научный руководитель: к.т.н., доцент Н.Д. Гаврилов

Балашовский институт (филиал) Саратовского национального исследовательского государственного университета имени Н.Г.Чернышевского, г. Балашов

Известно, что ингаляторы используются для увлажнения кислорода и дыхательных смесей при кислородной терапии и искусственной вентиляции лёгких, в целях профилактики и аэрозольной терапии заболеваний дыхательных путей и лёгких [1,2].

От того, каких именно размеров частицы аэрозоля попадут в дыхательную систему, зависят процесс лечения пациента и результат этого лечения.

Наилучший результат наступает при получении организмом частиц размером от 2,5 до 4,0 мкм [1,2].

В данной работе ставилась цель определить степень влияния времени работы ингалятора «Вулкан – 1» на изменение размера частиц аэрозоля.

К исследованию были приняты два аэрозоля, содержащие различные лекарственные вещества — аэрозоль №1(глицерин 35 мл, настойка эвкалипта 35 мл, ментол 0,7 г, спирт этиловый 30 мл) и аэрозоль №2

(натрия гидрокарбонат 2 г, натрия хлорида 1 г, вода дистиллированная 100 мл).

В качестве фактора, влияющего на изменение дисперсности аэрозолей, принималось время работы ингалятора «Вулкан-1» [2,3].

С учетом предварительных опытов к исследованию были приняты более узкие пределы изменения влияющего фактора $t_{MIN}=10~{\rm c}$ и $t_{MAX}=90~{\rm c}$ с шагом $\Delta t=10~{\rm c}$.

Для получения моделей, описывающих влияние времени t в принятых пределах варьирования, к исследованию были взяты две функции [4]:

$$Y = a_0 + a_1 \cdot X + a_2 \cdot X^2 -$$
квадратичная,

$$Y = a_0 + a_1 \cdot X + a_2 \cdot X^2 + a_3 \cdot X^3 -$$
 полином третьей степени.

В этих моделях a_0, a_1, a_2, a_3 — искомые постоянные коэффициенты, Y — исследуемая величина (размер частиц аэрозоля), а X — влияющий параметр (в нашем случае t— время работы прибора).

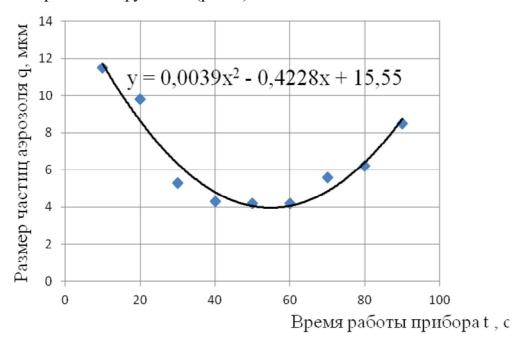
После проведения расчета коэффициентов моделей для аэрозоля №1, искомые функции были найдены в виде:

$$Y_1 = 15,55 - 0,4228X + 0,0039X^2$$
 — квадратичная модель,

$$Y_2 = 16,65 - 0,5221X + 0,0064X^2 - 2 \cdot 10^{-5} X^3$$
 — полином третьей степени.

Для определения адекватности моделей был вычислен критерий Пирсона χ^2 [4]. По уровню значимости $\alpha=0,05$ и числу степеней свободы k=n-3=9-3=6 было найдено его критическое значение $\chi^2_{KP}=26,18$.

Модель, описывающая поведение аэрозоля наилучшим образом, имеет квадратичный вид.


Аналогичным образом проводилось исследование размера частиц аэрозоля №2.

Искомые функции были найдены в виде:

$$Y_1 = 24,267 - 0,7103X + 0,0057X^2$$
 – квадратичная модель,

$$Y_2 = -28,5 - 1,1156X + 0,0153X^2 - 6 \cdot 10^{-5}X^3 -$$
 полином третьей степени.

В этом случае наилучшую сходимость результатов обеспечивает также квадратичная функция (рис.1).

Аппроксимация квадратичной функцией

Рис.1. Изменение величины капель аэрозоля №1, описываемое квадратичной моделью

В результате установлено, что модели, описывающие поведение аэрозолей в зависимости от времени работы прибора, имеют квадратичный вид:

$$Y_1 = 15,55 - 0,4228X + 0,0039X^2$$
 — для аэрозоля №1,
 $Y_2 = 24,267 - 0,7103X + 0,0057X^2$ — для аэрозоля №2.

Для поиска оптимальных пределов изменения времени работы ингалятора использовалось исследование функции на экстремум, позволяющее с определенной долей точности вычислить оптимальные пределы изменения функции.

В основу расчета был положен метод исследования производной в окрестностях минимума функции справа и слева. Границы, отделяющие

этот участок от приближенной линейности, являются пределами активного роста функции и представляют собой определенный оптимум ее изменения [4].

Минимум функции, описывающей поведение аэрозоля №1, имел вид:

$$Y_{1MIN} = 15,51 - 0,4228 \cdot 54,2 + 0,0039 \cdot 54,2^2 = 4,1 \text{ MKM}.$$

Оптимальные границы регулируемого параметра – времени работы ингалятора составили значения:

$$X_{MIN}=48{,}78\,$$
 с, $X_{OIIT}=54{,}2$ с, $X_{MAX}=59{,}69$ с — значения времени работы, $Y_{J\!I\!E\!B}=4{,}21\,$ мкм, $Y_{OIIT}=4{,}09\,$ мкм, $Y_{I\!I\!P}=4{,}21\,$ мкм — размер частиц.

Аналогичным образом были найдены оптимальные границы времени работы ингалятора для аэрозоля №2 (рис. 2).

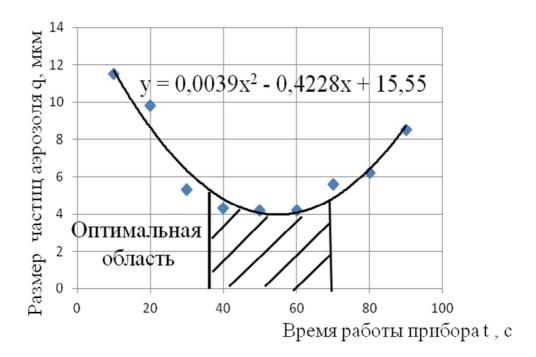


Рис. 2. Графическая иллюстрация оптимальной области изменения времени работы прибора для аэрозоля №1

Окончательно оптимальные области изменения времени работы ингалятора и размеры частиц аэрозолей сведены в таблицу 1.

Таблица 1 Оптимальные границы изменения времени работы ингалятора и размеры частиц аэрозоля

Время работы	t_{MIN} , c	$t_{O\Pi T}, c$	t_{MAX} , c
ингалятора			
Аэрозоль №1	48,07	54,2	59,69
Аэрозоль №2	56,07	62,3	68,53
Размер частиц аэрозоля	$q_{{\it ЛЕВ}},$ мкм	$q_{\scriptscriptstyle O\Pi T}$, мкм	$q_{\it \Pi P}$, мкм
Аэрозоль №1	4,21	4,09	4,21
Аэрозоль №2	2,36	2,14	2,36

Выводы:

- 1. Получены функции, описывающие поведение размера частиц аэрозолей в зависимости от времени работы ингалятора, среди которых наилучшую сходимость обеспечивают квадратичные модели.
- 2. Проведена оптимизация и найдены границы времени работы ингалятора, обеспечивающие получение наименьших размеров частиц аэрозолей.

Литература

- 1. Боголюбов В.М. Общая физиотерапия: учебник / В.М. Боголюбов, Г.Н. Пономаренко. М.: Высшая школа, 1999. 340 с.
- 2. Вячеславова Д. Д. Лабораторная ингаляция / Д.Д. Вячеславова, С.А. Зайцева, Д.Д. Грибанов. – М.: Форум, 2009. – 464 с.
- 3. Гехт Б.М. Теоретическая и клиническая электромиография / Б.М. Гехт. Л.: Наука, 1990. 229 с.
 - 4. Данко П. Е. Высшая математика в упражнениях и задачах: в 2 ч./

- П. Е. Данко, Т. Я. Кожевникова, А. Г. Попов. М.: Высшая школа, 1986. 296 с.
- 5. Клячкин Л.М. Физические методы лечения в пульмонологии / Л.М.Клячкин, А.Г.Малявин, Г.Н.Пономаренко. СПб.: Энергия, 1997. 450 с.
- 6. Пономаренко Г.В. Ингаляционная терапия / Г.Н.Пономаренко, А.В.Червинская, С.Н.Коновалов. СПб.: Энергия, 1998. 420 с.

УСТРОЙСТВО ДЛЯ ПРОСТРАНСТВЕННО-ВРЕМЕННОГО ОПРЕДЕЛЕНИЯ ЗОН СТОПЫ: ПЕРСПЕКТИВЫ РЕАЛИЗАЦИИ

Э.А. Даминова, Т.В. Мирина Научный руководитель: к.т.н., доцент Т.В. Мирина

Уфимский государственный авиационный технический университет, г. Уфа

Современную медицину невозможно представить без различных приборов, систем и комплексов. Начиная с середины 60-х годов прошлого века, наметилась тенденция к автоматизации процессов сбора, хранения, обработки информации, проведения процедур и выполнения операций. Успех этих начинаний во многом зависел от внедрения инженерной мысли в медицину с последующим усовершенствованием и стремлением к улучшениям.

Большую долю среди всей медицинской техники, с точки зрения решаемых задач, занимает диагностическая техника, которая предназначена для исследования структурных и функциональных характеристик организма. Такая техника, в свою очередь, делится на

классы в зависимости от области применения. Одной из таких областей является диагностика опорно-двигательного аппарата.

В работах [1, 2], опубликованных ранее, вопрос рассматривался с теоретической точки зрения. Приведем структурную схему разрабатываемого устройства (рис. 1).

Представленная структурная схема содержит два измерительных канала: для правой и левой ног пациента. Каждый канал состоит из идентичного набора элементов: блока датчиков, расположенных на обувной стельке, мультиплексора, фильтра низких частот и аналоговоцифрового преобразователя. При этом фильтр низких частот сопряжен со схемой смещения нуля, т.к. того требует схема включения датчиков (однополярное питание).

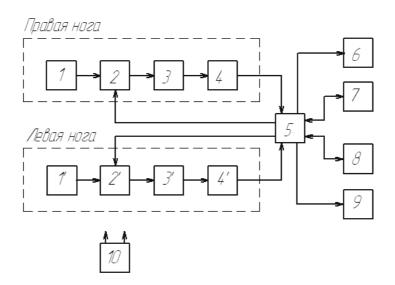


Рис. 1. Структурная схема устройства для пространственно-временного определения зон стопы: 1, 1' — блоки датчиков для правой и левой ног соответственно; 2,2' — мультиплексоры; 3,3' — фильтры низких частот, 4,4' — аналогово-цифровые преобразователи; 5 — микроконтроллер; 6 — слот для карт памяти, 7 — USB-интерфейс; 8 — клавиатура; 9 — устройство визуализации; 10 — аккумулятор

Мультиплексоры управляются микроконтроллером, который, в свою очередь, позволяет подключать устройство к ЭВМ, записывать информацию на съемный носитель, осуществлять управление режимами работы устройства, а также дает возможность визуализировать процесс измерения. Устройство является портативным и поэтому питается от сменного аккумулятора, который, в свою очередь, может подзаряжаться от сети.

дальнейшей проработки Результатом темы явилась усовершенствованная структурная схема. Усовершенствования коснулись прежде всего способа передачи данных, а также средств для их получения – первичных преобразователей. Произведен переход от передачи данных через ленточные кабели К беспроводной передаче данных использованием технологии беспроводной передачи данных Bluetooth. Отметим, что данный вид беспроводной передачи данных ориентирован на применение в медицине и встречается сегодня в некоторых других медицинских системах.

Bluetooth-модулей Использование практически не изменяет имеющуюся структурную схему, за исключением того, что теперь полученные данные будут оперативно передаваться на персональный компьютер, в режиме реального времени, минуя передачу на карту памяти и последующий этап внесения данных в персональный компьютер. Помимо решения вопроса надежности передачи сигнала, данный вид связи позволит организовать биологическую обратную связь «испытуемый врач – испытуемый». Биологическая обратная связь – информационная обратная связь, относительно функционирования тела человека, которая действует как корректировщик, показывая человеку, как и в каком направлении меняется тот или иной процесс в зависимости совершаемых им действий. На практике применение биологической обратной связи используется достаточно долго и уже доказало свою эффективность.

Внедрение беспроводной передачи информационно-измерительных сигналов позволит не только обеспечить систему надежностью, но и значительно уменьшить габариты блока первичной обработки сигналов. Так как закодированные сигналы будут поступать непосредственно на персональный компьютер, можно отказаться от использования в схеме устройства блока записи сигналов. Таким образом, сигналы с датчиков сразу будут преобразованы в код посредством использования аналогоцифрового преобразователя и переданы на персональный компьютер.

работах делался В предыдущих упор на тензометрические преобразователи. Сегодня на рынке микроэлектронных компонентов можно встретить достойную замену таким датчикам – сенсорные чувствительные элементы, рассчитанные на соответствующую нагрузку в виде давления. Преимущество таких первичных преобразователей не только в их современной форме, возможностях, габаритах, а еще и в легкой c возможности интеграции известными модулями микропроцессорной техники. Например, датчики FSR-402 производства компании Interlink Electronics являются совместимыми с современными микропроцессорными модулями, например, с платформой Arduino. Перечислим преимущества использования сенсоров:

- доступность на рынке микроэлектронных компонентов (фактор весьма важен, т.к. производство датчиков на тензокристаллах не является серийным и не поставлено на поток из-за размеров датчиков);
 - приемлемая стоимость;
 - гибкая интеграция в готовые процессорные модули;
 - высокая точность.

Таким образом, появившаяся перспективная возможность реализации устройства для пространственно-временного определения зон

стопы позволила улучшить разработку, оптимизировать передачу данных, а также предоставила возможность реализации биологической обратной связи «испытуемый – врач – испытуемый».

Разработка устройства для пространственно-временного определения зон стопы выполняется при финансовой поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере в рамках программы «У.М.Н.И.К.».

Литература

- 1. Даминова Э.А. Прибор для пространственно-временного определения зон стопы / Э.А. Даминова // Актуальные вопросы биомедицинской инженерии: сб. материалов IV Всерос. науч. конф. для молодых ученых, студентов и школьников. 20 октября 15 декабря 2014 г. Саратов: ООО «Издательский Центр «Наука», 2014. С. 23-26.
- 2. Даминова Э.А. Современная компьютерная подография: проблемы и перспективы / Э.А. Даминова // Современные проблемы биомедицинской инженерии: сб. материалов Всерос. молодеж. науч. конф. 6-8 апреля 2015 г. М.: Прондо, 2015. С. 372-376.

СВОБОДНО РАСПРОСТРАНЯЕМАЯ РЕАЛИЗАЦИЯ КАРДИОАЙГЕНОСКОПА НА БАЗЕ SCILAB

Б.С. Аль-Барати, В.В. Исакевич, Д.В.Исакевич Научный руководитель: д.т.н., профессор Л.Т. Сушкова

Владимирский государственный университет, г. Владимир

Собственные векторы ковариационной матрицы синхронного ансамбля выражают ортогональные компоненты типичного поведения

ЭКГ на конечном интервале анализа, синхронизированном с R-пиком. Собственные значения характеризуют энергию компонент.

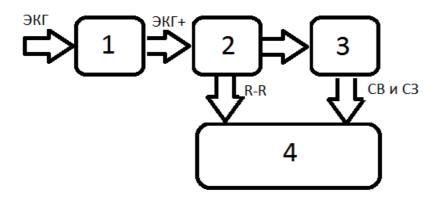


Рис. 1. Кардиоайгеноскоп: I — фильтр, устраняющий медленную волну (МВ) ЭКГ; 2 — формирователь синхронного ансамбля (СА); 3 — вычислитель собственных векторов (СВ) и собственных значений (СЗ); 4 — блок хранения и анализа

Полученные при построении синхронного ансамбля RR-интервалы, а также собственные векторы и собственные значения ковариационной матрицы содержат диагностически значимую информацию как о неравномерности ритма сердца, так и о микроальтернациях кардиоцикла. Это именно та информация, которая интересует кардиолога, и именно она подлежит дальнейшему анализу. Эта информация является достаточной для восстановления исходной ЭКГ, что позволяет использовать кардиоайгеноскоп для сжатия и хранения ЭКГ (блок 4 на рис. 1).

 $ЭК\Gamma$ — электрокардиограмма, $ЭК\Gamma$ + — электрокардиограмма с устраненной медленной волной, R-R — последовательность интервалов между соседними R-зубцами $ЭК\Gamma$, CB — собственные векторы, C3 — собственные значения.

На рис. 2 представлен график синхронного ансамбля, полученного по II отведению для пациента с диагнозом «Аритмический синдром» (ЭКГ взята из базы данных PTB Diagnostic ECG Database [2]). Собственные векторы ковариационной матрицы ансамбля представлены на рис. 4. Как видно из рисунка 4а, собственный вектор №1 характеризует кардиоцикл «в среднем»; этому собственному вектору соответствует более 90 % всей энергии ЭКГ на интервале анализа. Собственный вектор №2 характеризует вариации кардиоцикла — микроальтернации; он наилучшим образом описывает ошибку, оставшуюся после описания ЭКГ первым собственным вектором. Собственные векторы №3 и №4 характеризуют вариации следующих порядков.

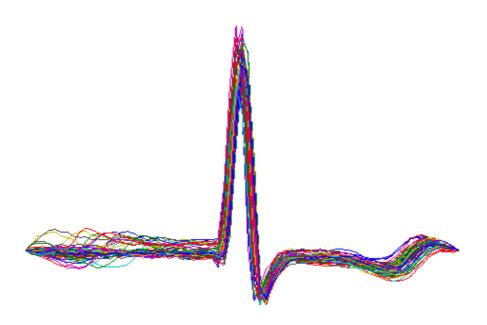
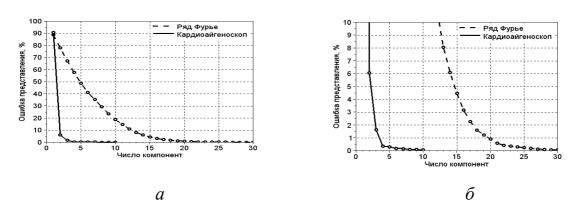
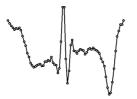
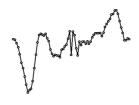


Рис. 2. Синхронный ансамбль (ІІ отведение)




Рис. 3. Зависимость ошибки представления CA (в %) от числа компонент: а – для диапазона точности 100 %; б– для диапазона точности 10 %



a – Собственный вектор № 1(в среднем 90,8 % энергии)

б – Собственный вектор № 2(в среднем 6,07 % энергии

в – Собственный вектор № 3(в среднем 1,62 % энергии)

г – Собственный вектор № 4(в среднем 0,36 % энергии)

Рис. 4. Первые четыре собственных вектора для CA, представленного на рис. 3

На рис. З показаны спектры при представлении ЭКГ в базисе собственных векторов синхронного ансамбля (сплошная кривая) и в базисе Фурье (пунктирная кривая). Как видно из рисунка За, общее число компонент, необходимых для представления ЭКГ в базисе Фурье, не менее двадцати; для представления в базисе собственных векторов требуется не более десяти компонент. Рисунок Зб позволяет более точно оценить число компонент, необходимых для представления ЭКГ с использованием кардиоайгеноскопа; так, для представления с относительной погрешностью не более 1 % достаточно четырёх собственных векторов.

На рис. 5 и 6 представлены ортогональные компоненты №1 и №2, полученные по фронтальным отведениям при диагнозе «Аритмический синдром». На рис. 7 и 8 представлены компоненты №1 и №2, полученные при диагнозе «Условно здоров». Из рис. 5 и 7 видно, что типичная форма PQRST-комплекса для ЭКГ здорового пациента и пациента с аритмией

различна. Сопоставление рис. 6 и 8 показывает, что при аритмическом синдроме имеют место существенные микроальтернации в окрестности R-пика, в то время как для условно здорового пациента микроальтернации значительно слабее.

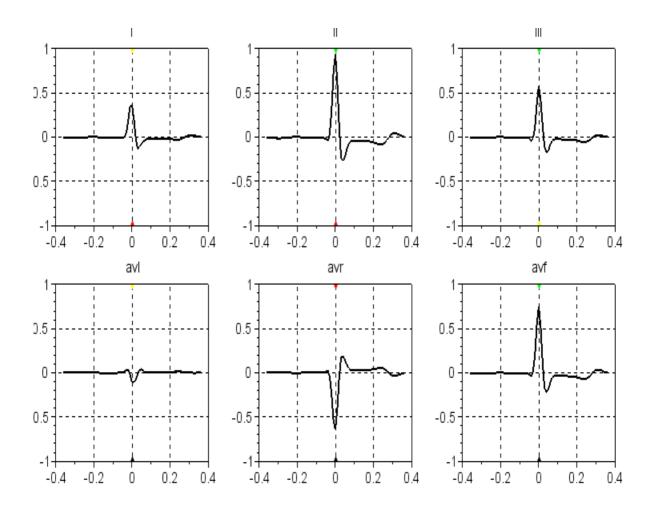


Рис. 5. Аритмический синдром. Типичные представители СА (первые собственные векторы) во фронтальных отведениях восстанавливают PQRST- цикл с точностью до 91 %. По горизонтальной оси время в секундах, по вертикальной – восстановленный сигнал в отведениях – в милливольтах. Синхронизация по II отведению

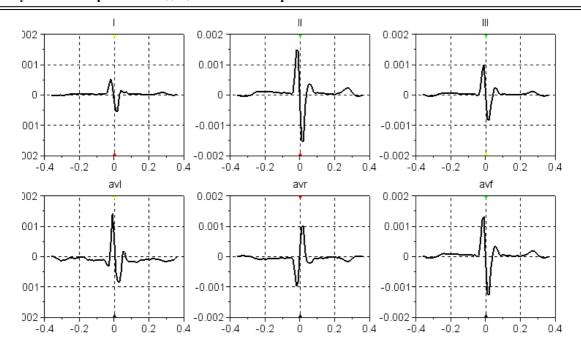


Рис. 6. Аритмический синдром. Типичные представители микроальтернаций (вторые собственные векторы) во фронтальных отведениях имеют средний вклад в энергию PQRST-цикла около 6 %.

По горизонтальной оси – время в секундах, по вертикальной – микроальтернации в отведениях в милливольтах. Синхронизация

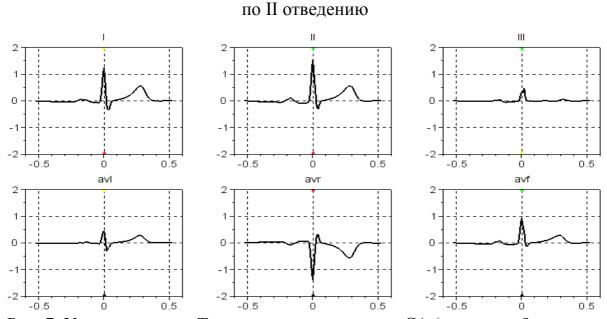


Рис. 7. Условно здоров. Типичные представители СА (первые собственные векторы) во фронтальных отведениях. По горизонтальной оси время в секундах, по вертикальной – восстановленный сигнал в отведениях в милливольтах. Синхронизация по ІІ отведению

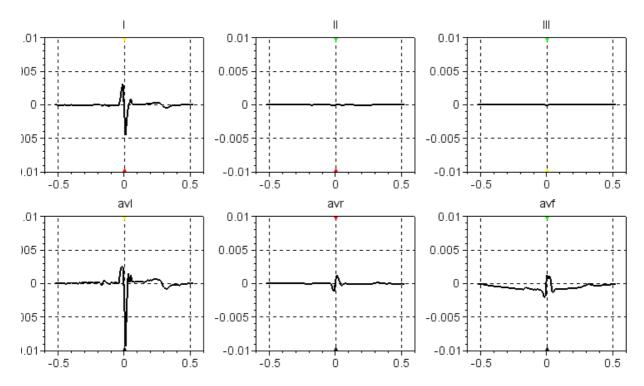


Рис. 8. Условно здоров. Типичные представители микроальтернаций (вторые собственные векторы) во фронтальных отведениях.

По горизонтальной оси — время в секундах, по вертикальной – микроальтернации в отведениях в милливольтах.

Синхронизация по II отведению

Таким образом, использование кардиоайгеноскопа позволяет представить ЭКГ с использованием минимального количества составляющих, несущих диагностически значимую информацию, что позволяет осуществлять как анализ микроальтернаций, так и сжатие ЭКГ.

Литература

- 1. Исакевич В.В., Исакевич Д.В., Батин А.С. Кардиоайгеноскоп. Патент на полезную модель РФ №128470.
- 2. PTB Diagnostic ECG Database. [URL]: www.physionet.org/physiobank/database/ptbdb

ОЦЕНКА ЭФФЕКТИВНОСТИ ГЛЮКОСИМЕНСГРАММЫ

А.П. Бабашкина

Научный руководитель: д.т.н., профессор Е.И. Глинкин

Тамбовский государственный технический университет, г. Тамбов

Теория измерений для метрологической оценки приборов предлагает абсолютные и относительные погрешности случайных наблюдений относительно действительных значений в виде геометрических и арифметических оценок [1]. Основным преимуществом известных оценок является относительно простая техника вычислений значений, но их достоверность и объективность условны из-за отсутствия оптимального эквивалента. Для автоматического поиска оптимальной меры необходима гибкая оптимальная оценка из множества случайных значений. При этом эффективность случайных оценок относительно оптимального эквивалента становится достоверной и объективной в адаптивном диапазоне [1, 2].

Цель: повысить достоверность и объективность меры оценки исследуемой глюкосименсграммы.

Задачи:

- 1. Провести сопоставительный анализ известных мер оценок эффективности;
- 2. Найти оптимальный критерий оценки исследуемой характеристики;
- 3. Доказать эффективность мультипликативного критерия для исследуемой глюкосименсграммы.

Оптимальные оценки рассмотрим на примере мультипликативного симметричного критерия [1], включающего среднее арифметическое и среднее геометрическое. Глюкосименсграмма (ГСМ) — это нелинейная

зависимость концентрации глюкозы от проводимости. Она подобна вольт — амперной характеристике [2] и для наглядности в линейном отображении представлена в логарифмических координатах. Например, глюкоза по оси y отображается как $\ln P$ и измеряется в ммоль/л, а проводимость по оси x представлена как y и измеряется в сименсах.

Шаг 1. Задаем линейную последовательность множества данных x и y для i числа измерений (i=1,n) в исследуемом диапазоне D=1-20 (рис. 1). Средняя арифметическая оценка — одна из наиболее распространённых мер эффективности, объединяет сумму всех измерений, делённых на их количество. Среднее арифметическое \overline{X} множества n измерений x_i ГСМ определяется выражением:

$$\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i .$$

Для диапазона ГСМ (рис. 1, a) при моделировании получено, что $\overline{X} = 8.386$.

Шаг 2. Оценим эффективность в заданном диапазоне D=1-20 по относительной погрешности ε (рис. $1, \delta$) к среднему арифметическому. На графике видно, что погрешность ε абсолютной меры максимальна на границах и минимальна только при среднем арифметическом $\overline{X}=8.386$.

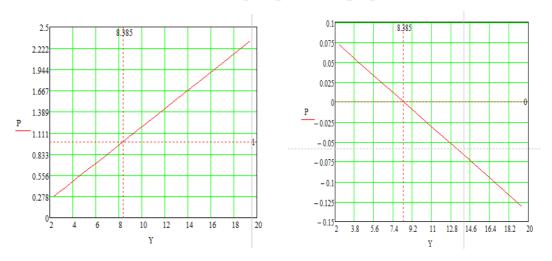


Рис. 1. График средней арифметической оценки по точности (a) и по погрешности (δ)

Шаг 3. Задаем линейную последовательность множества данных x и y для i числа измерений (i=1, n) в диапазоне D=1-20, но по средней геометрической \underline{X} оценке ГСМ (рис. 2), которая объединяет ряд переменных измерений в ненормированное произведение. Введем формулу средней геометрической оценки ГСМ:

$$\underline{X} = \sqrt[n]{\prod_{i=1}^{n} X_{i,j}}$$

Для диапазона D=1-20 моделирования линейного ряда построен график средней геометрической оценки ГСМ относительно $\underline{X}=6.818$ (рис. 2, a). Графики средней геометрической оценки по точности и по погрешности представлены на рис. 2, a, δ .

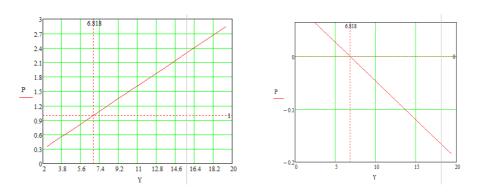


Рис. 2. График средней геометрической оценки по точности (a) и по погрешности (δ)

Из рис. 2, δ видно, что погрешность ε абсолютной меры максимальна на границах и минимальна только при среднем геометрическом $X=6{,}818$.

Шаг 4. Аналогично предыдущим методам задаем линейную последовательность множества данных x и y для i числа измерений (i=1,n) в диапазоне, но по мультипликативной мере оценки. Мультипликативная мера сравнивает произведения исследуемых последовательностей

измерений с максимальным произведением – оптимальным нормируемым эквивалентом [2].

Мультипликативный симметричный критерий (МСК) целесообразно представить отношением произведения $q = \prod_{i=1}^{n} x_i$ случайных величин x_i к оптимальному эквиваленту q_0 симметричных мер $x0_i = x0_i + 1$ [1, 2].

Диапазон произведений q случайных величин может изменяться от 0 до q_0 , поэтому интервал МСК варьируется от 0 до 1 и достигает максимальной оценки Q_0 =1 в пределе приближения x_i к симметричной мере x_{0i} (рис. 3, a).

Для диапазона D=1-20 линейного ряда при моделировании получено, что данный график максимален при $\overline{X}=10$, графики оценки по мультипликативной мере приведены на рис. 3, a, δ .

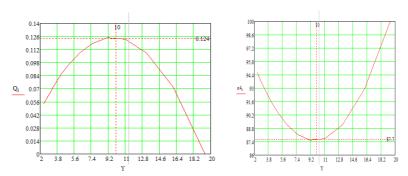


Рис. 3. Графики мультипликативной оценки по точности (a) и по погрешности (δ)

Графики (рис. 3) показывают, что мультипликативная мера является самой точной объективной оценкой действительного измерения среди известных абсолютных мер, т.к. на нем четко отображается максимум функции относительно оптимального эквивалента глюкосименсграммы.

Выводы:

1. Погрешности абсолютных средних мер максимальны на границах глюкосименсграммы и минимальны только при среднем арифметическом и среднем геометрическом, которые не тождественны;

- 2. Средние оценки отражают единичную нелинейность при нулевой погрешности, что доказывает их эффективность только в узком диапазоне глюкосименсграммы, не соответствующем симметричному эквиваленту;
- 3. Анализ погрешностей доказывает, что оптимальной является мультипликативная оценка глюкосименсграммы, т.к. именно она адекватна действительному измерению в адаптивном диапазоне с заданной точностью нормированных мер.

Литература

- 1. Глинкин Е.И. Оптимальные меры оценки эффективности / Е.И. Глинкин // Вестник ТГУ. Тамбов: ТГУ, 2014. Т. 19. Вып. 6. С. 1863-1869.
- 2. Чичёв С.И. Инфокоммуникационные сети магистральных электрических сетей / С.И. Чичёв, В.Ф. Калинин, Е.И. Глинкин. М.: Спектр, 2013. С. 178 193.

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ЭФФЕКТА ЛОЖНЫХ СВЯЗЕЙ ИЗ-ЗА РЕДКОЙ ВЫБОРКИ И ШУМА НАБЛЮДЕНИЙ

С.Н. Крылов^{1,2}

Научный руководитель: д.ф.-м.н., в.н.с. Д.А. Смирнов²

¹Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, г. Саратов
²Саратовский филиал ИРЭ имени В.А. Котельникова РАН, г. Саратов

Изучение взаимодействий между колебательными системами представляет собой важную задачу в самых разных областях науки и техники [1,2], включая геофизику и нейрофизиологию. Особенно часто

необходимо оценить, насколько сильно влияние одного наблюдаемого процесса на другой.

Причинность по Грейнджеру при такой постановке задачи - наиболее часто используемый подход [3]. Система У является «причиной по Грейнджеру» (влияет на систему Х, если прогноз будущего поведения Х с учетом данных У точнее по сравнению с прогнозом, основанным только на учете данных о системе Х). Ненулевое улучшение прогноза (УП) обычно понимают как наличие физического воздействия У на Х, а ненулевое УП «в обе стороны» понимают как признак двунаправленной связи. Прогноз осуществляется на один временной шаг (или интервал выборки Δt) вперед. Ранее в математических работах было показано, что в некоторых случаях даже при однонаправленной связи может наблюдаться ненулевое УП в обе стороны, что может привести к ложным срабатываниям (эффект ложных связей) [4,5]. На ранних этапах исследования в рамках данной работы было рассмотрено влияние редкой выборки (т.е. большой величины Δt) на этот эффект при наличии и отсутствии осреднения, широко распространенного на практике.

Тем не менее, до сих пор оставалось неясным, насколько типично и сильно влияние с физической точки зрения шума наблюдения на эффект ложных связей. На данном этапе работы проводится исследование этого фактора, а также насколько его влияние сопоставимо с влиянием редкой выборки.

Данная работа посвящена поиску условий проявления эффекта ложных связей на примере простой математической системы, являющейся моделью широкого класса колебательных систем.

А именно, на ранних этапах для исследования случая редкой выборки использовались линейные стохастические диссипативные осцилляторы с однонаправленной связью, описанные стохастическими разностными уравнениями [6]:

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \xi_{x,n}$$

$$y_n = b_1 y_{n-1} + b_2 y_{n-2} + c x_{n-1} + \xi_{y,n} ,$$
(1)

где коэффициенты

$$a_1 = 2\cos\left(2^{\pi}/T_x\right)\exp\left(-\frac{1}{T_x}\right),\tag{2}$$

$$a_2 = -exp\left(-\frac{2}{T_x}\right), \tag{3}$$

 b_1 и b_2 вычисляются через T_y and τ_y по аналогии с a_1 и a_2 соответственно; ξ — гауссовские взаимно некоррелированные белые шумы с дисперсией, принятой за 1. T в формулах для коэффициентов - период, а τ - время релаксации колебаний. В данной работе эти индивидуальные параметры осцилляторов являются переменными.

В рамках исследования коэффициент связи c рассчитывается автоматически программой для каждого случая. Для этого нами была введена величина

$$\gamma_y = c \frac{\sigma_x}{\sigma_{\xi,y}}$$

где σ_x – среднеквадратичное отклонение процесса X,

 $\sigma_{\xi y}$ — среднеквадратичное отклонение шума процесса Y (в рамках текущего исследования принята за 1). Эта величина характеризует связь между процессами X и Y.

Таким образом, становится возможным провести анализ зависимости УП от индивидуальных параметров системы при постоянной силе связи.

Значения УП вычисляются точно (без помощи метода статистической оценки временных рядов) через определители матриц ковариаций двумерного процесса (1), которые находим, решая линейные дифференциальные уравнения для моментов второго порядка [7]. В случае шума наблюдений нами был рассмотрен только один случай, когда выявление связи дополнительно осложнено тем, что шум наблюдений присутствует только для процесса X, но не процесса Y. Для этого в рамках

метода в матрицах ковариаций необходимо добавить к σ_{x}^{2} и $\sigma_{x,y}^{2}$ некоторой величины, равной величине дисперсии шума наблюдений.

В ходе исследований показано, что в случае шума наблюдений эффект ложных связей может быть достаточно силен (УП более 2 %) и при умеренной взаимной корреляции сигналов. Данные значения особенно сильно зависят от времени релаксации сигнала в ведущем осцилляторе (τ_x). При достаточно больших значениях этой величины УП принимает достаточно большие значения (более 1 %). Зависимость от периодов колебаний выражена не столь явно и имеет более сложный характер, исследование которого на настоящий момент еще продолжается.

Сопоставление эффекта ложных связей из-за редкой выборки и шума наблюдений показывает, что второй фактор является более трудной проблемой на практике. Редкая выборка приводит к существенному эффекту ложных связей (УП более 1 %) только в узком диапазоне интервалов выборки (2-5 точек на характерном периоде) и по этому признаку проблема легко диагностируется на практике. Стоит отметить, что этот эффект проявляется при небольшой силе связи – величину Уу порядка 0.1 и при умеренных значениях коэффициента взаимной корреляции процессов (менее 0.5). Шум наблюдений может привести к ложным выводам (УП порядка 1-3 %) в широком диапазоне значений дисперсии шума наблюдений и дисперсии сигнала, но соотношений достаточно узком диапазоне значений индивидуальных параметров системы. Стоит отметить, что в этом случае также возможно прийти к ложным выводам при небольших значениях коэффициента взаимной процессов (менее 0.5), но корреляции при сильной связи коэффициентов γ_{y} близких к 1.

Поэтому учет априорной информации или разработка специальных тестов, аналогичных [4,8], важны на практике для верных выводов о

наличии связей даже при умеренных корреляциях наблюдаемых сигналов в случае шума наблюдений, тогда как эффектом редкой выборки в этой ситуации чаще всего можно пренебречь.

Работа выполнена при поддержке РФФИ (проекты № 14-02-31129, № 14-02-00492).

Литература

- 1. Pikovsky A.S. Synchronization: A Universal Concept in Nonlinear Sciences / A. S. Pikovsky, M. G. Rosenblum, J. Kurths // Cambridge University Press, Cambridge, 2001. 410 p.
- 2. Nonlinear dynamics of chaotic and stochastic systems / V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, N.E. Vadivasova // Springer-Verlag, Berlin, 2002. 108 p.
- 3. Granger C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods / C.W.J. Granger // Econometrica, 1969. Vol. 37. No. 3. P.424.
- 4. Smirnov D.A. Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series / D.A. Smirnov, B.P. Bezruchko // Europhys. Lett. 2012. Vol. 100. P. 10005.
- 5. Влияние интервала выборки на эффект ложной связи осцилляторов с различными параметрами собственных колебаний / С.Н. Крылов, Д.А. Смирнов, Г.В. Осипов, Б.П. Безручко // Письма в ЖТФ. 2015. Т.41. В.11. С. 94-102.
- 6. Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram / J. Timmer, M. Lauk, W. Pfleger, G. Deuschl // Biol. Cybern. − 1998. − №78. − C. 349.
- 7. Smirnov D.A. Spurious causalities with transfer entropy / D.A. Smirnov // Phys. Rev. E. − 2013. − №87. − P. 042917.

8. Смирнов Д.А. Выявление взаимного воздействия между колебательными системами по данным наблюдений / Д.А. Смирнов, Б.П. Безручко // Известия вузов. Радиофизика. — 2012. — Т. 55. — № 10/11. — С. 736-750.

ИССЛЕДОВАНИЕ СМАЧИВАЕМОСТИ ГА ПОКРЫТИЙ, СФОРМИРОВАННЫХ МЕТОДОМ ВЧ-МАГНЕТРОННОГО РАСПЫЛЕНИЯ НА БИОДЕГРАДИРУЕМОМ МАГНИЕВОМ СПЛАВЕ

Е.С. Мельников, М.А. Сурменева Научный руководитель: к.ф.-м.н, доцент Р.А. Сурменев

Национальный исследовательский Томский политехнический университет, г. Томск

При нанесении на микрорельеф подложки магниевого сплава наноструктурного покрытия на основе ГА формируется многомодальная морфология. Возможность контроля толщины пленок в нанодиапазоне позволяет получать ГА покрытия на подложках, которые имеют специфические поверхностные особенности без существенного изменения рельефа на микроуровне [1].

По результатам энергодисперсионного рентгеновского анализа было рассчитано отношение $Ca/P=1,63\pm0,03$ для сформированных ГА покрытий. Также была исследована взаимосвязь отношения $Ca/P=1,67\pm0,02$ мишени и ГА покрытия на магниевых подложках для дальнейшего применения в других экспериментах [2,3].

На основании результатов рентгеновской дифракции (рис. 2) установлено, что основные рефлексы ГА (ICDD card number 09-432)

присутствуют при 25,8° (002), 53,1° (004), 31,8° (211), 32,2° (112) и 32,9° (300), которые относятся к кристаллическому ГА. После отжига наблюдается тенденция увеличения интенсивности линий ГА (рис. 2). Согласно [8,4], температура и продолжительность термообработки влияют на свойства ГА покрытий. Таким образом, процесс отжига повышает степень кристалличности ГА при отжиге до 450° С [8,9].

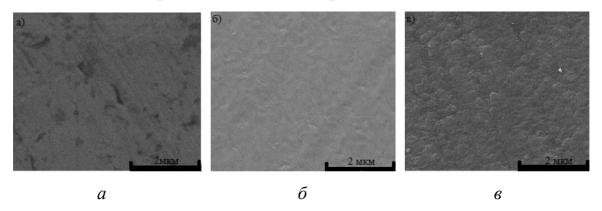


Рис. 1. Изображения СЭМ для магниевого сплава AZ91 до (a) и после осаждения ГА покрытия (δ, ϵ) , до (δ) и после (ϵ) отжига

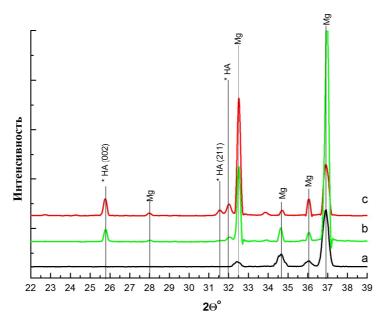


Рис.2. Рентгенограммы магниевого сплава AZ91 до и после осаждения ГА покрытия в режиме: 500 Вт, 0,4 Па в течение 8 часов:

a — магниевый сплав AZ91 до отжига без покрытия; b —магниевый сплав AZ91 до отжига с ГА покрытием; c —магниевый сплав AZ91 после отжига с ГА покрытием

Гидрофильная поверхность биоматериалов является более предпочтительной по сравнению с гидрофобной с точки зрения взаимодействия с клетками и тканями в организме [4-6]. Величина краевого угла для смачивания воды на поверхности сплава перед напылением составляла $101\pm6^{\circ}$. Для ГА покрытия до и после отжига значения краевых углов составляли $51\pm3^{\circ}$ и $74\pm4^{\circ}$, соответственно.

Свободная поверхностная энергия значительно увеличивается на образцах с покрытием и несущественно снижается после отжига (табл. 1). Таким образом, ГА покрытие увеличивает поверхностную энергию, а, следовательно, является благоприятной средой для клеточной адгезии [7].

Таблица 1
Параметры шероховатости и смачиваемости для магниевого сплава
АZ91 без покрытия, с покрытием и с покрытием после отжига

Параметры		AZ91 подложка	AZ 91 с ГА покрытием	АZ 91 с ГА покрытием после отжига
Параметр шероховатости <i>Sa</i> , нм		62±3	72±3	79±4
Контактный угол, °	Вода	101±6	51±3	74±4
		Ω		
	Дийодметан	67±4	60±4	56±3
	Этиленгликоль	81±9	43±5	55±3
Поверхностная энергия, мН/м		22,4 ±1,2	45,9±2,3	38,2±2,1
Полярная составляющая, мН/м		1,2±0,1	31,8±4,2	22,1±2,1
Дисперсионная составляющая, мН/м		21,6±2,2	14,1±2,1	16,1±1,7

Исследованы морфология, фазовый и элементный состав ГА покрытий, полученных методом ВЧ-магнетронного распыления на поверхности магниевого сплава АZ91. Сформированное покрытие состоит из Са, Р, С и О. Установлена зависимость между морфологией поверхности и её гидрофильными свойствами. Нанесение ГА покрытия приводит к уменьшению контактного угла $(51\pm3^{\circ})$ и росту поверхностной энергии $(45,9\pm2,3\,$ мН/м). Отжиг образцов показал незначительное увеличение контактного угла $(74\pm4^{\circ})$ и поверхностной энергии $(38,2\pm2,1\,$ мН/м). Образцы с ГА покрытием (до и после отжига) обладают гидрофобными характеристиками по сравнению с подложками без покрытия.

Авторы выражают благодарность М. Ульбрихту, М. Эппле, О. Примаку, Р. Сурменеву за предоставленную возможность работать в университете Дуйсбурга-Эссена, Германия. Исследование выполнено при поддержке РНФ (N214-13-00274).

Литература

- 1. Boyd A.R. Control of calcium phosphate thin film stoichiometry using multi-target sputter deposition / A.R. Boyd, C. O'Kane, B.J. Meenan // Surface and Coatings Technology, 2013. Vol. 233. P. 131-139.
- 2. Effect of silicate doping on the structure and mechanical properties of thin nanostructured RF magnetron sputter-deposited hydroxyapatite films / M.A. Surmeneva, T.M. Mukhametkaliyev, A.I. Tyurin et al. // Surface and Coatings Technology. 2015. Vol. 275. P. 176-184.
- 3. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications / M.A. Surmeneva, R.A. Surmenev, Y.A. Nikonova et al. // Applied Surface Science. 2014. Vol.317. P. 172-180.

- 4. Effect of initial orientation on the microstructure and mechanical properties of textured AZ31 Mg alloy during torsion and annealing / J. Wang, D. Zhang, Y. Li et al. // Materials & Design. 2015. Vol. 86. P. 526-535.
- 5. The gene-expression and phenotypic response of osteoblasts to surface-modified titanium and zirconia / B. Setzer, M. Bachle, M.C. Metzger, R.J. Kohal // Biomaterials. 2009. Vol. 30. P. 979-990.
- 6. Regulation of Osteoblast Proliferation and Differentiation by Interrod Spacing of Sr-HA Nanorods on Microporous Titania Coatings / J. Zhou, X. Zhang, J. Chen et al. // Materials in medicine. 2009. Vol. 4. P. 5358-5365.
- 7. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells / N. Eliaz, S. Shmueli, I. Shur et al. // Acta biomaterialia. -2009. Vol. 5. P. 3178-3191.
- 8. Zhou J. Temperature Characteristics of Synthetic Hydroxyapatite / J. Zhou, X. Zhang, J. Chen High // Materials in Medicine. 1993. Vol. 4. P. 83-85.
- 9. Ooi C. Properties of hydroxyapatite produced by annealing of bovine bone / C. Ooi, S. Ramesh // Ceramics International. 2007. Vol. 33. P. 1171-1177.

АНТИМИКРОБНЫЕ СВОЙСТВА ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ NOCARDIA VACCINII ИМВ В-7405, СИНТЕЗИРОВАННЫХ НА ПРОМЫШЛЕННЫХ ОТХОДАХ

Л.В. Никитюк

Научный руководитель: д.б.н., профессор Т.П. Пирог

Национальный университет пищевых технологий, г. Киев

Ранее [1] мы сообщали о том, что поверхностно-активные вещества *Nocardia vaccinii* ИМВ В-7405, синтезированные на промышленных отходах, снижали на 50-90 % адгезию некоторых бактерий и дрожжей на различных абиотических поверхностях. Из литературы [2] известно, что микробные ПАВ проявляют и антимикробные свойства. Отметим, что использование в качестве субстратов для их синтеза промышленных отходов (пережаренное масло и технический глицерин) позволит не только снизить себестоимость конечного продукта, но и утилизировать токсичные отходы [3, 4].

В связи с изложенным выше цель данной работы - исследование антимикробных свойств ПАВ, синтезированных N. vaccinii ИМВ В-7405 на промышленных отходах.

N. vaccinii ИМВ В-7405 культивировали в жидкой минеральной среде, содержащей 2 % (по объему) отработанного после жарки мяса и картофеля масла и технического глицерина. ПАВ экстрагировали смесью Фолча (хлороформ и метанол, 2:1) из супернатанта культуральной жидкости. Антимикробные свойства поверхностно-активных веществ анализировали по показателю минимальной ингибирующей концентрации (МИК) [5]. Определение МИК осуществляли методом двухкратных разведений в мясопептонном бульоне (МПБ) для бактерий и жидком сусле

для дрожжей. Результаты оценивали визуально по помутнению среды: (+) — пробирки, в которых наблюдали помутнение среды (рост тест-культуры), (-) — помутнения не было (рост отсутствует). МИК раствора ПАВ определяли как среднее значение между концентрациями ПАВ в последней пробирке, где рост отсутствовал, и в предыдущей, где он наблюдался.

Результаты исследований, приведенные в табл. 1, свидетельствуют что минимальная ингибирующая концентрация ПАВ по отношению к вегетативным клеткам *Bacillus subtilis* БТ-2, *Escherichia coli* IEM-1 и дрожжам *Candida albicans* Д-6 ПАВ, синтезированных на отработанном после жарки картофеля масле, составляла 8–33 мкг/мл и была ниже, чем МИК препаратов, полученных на рафинированном (10–42 мкг/мл) и отработанном после жарки мяса масла (35–75 мкг/мл).

Более высокие значения МИК (кроме спор *B. subtilis* БТ-2) были установлены для препаратов поверхностно-активных веществ, синтезированных на очищенном глицерине. Так, МИК этих ПАВ по отношению к исследуемым бактериям и дрожжам составляла 75–600 мкг/мл, что выше, чем для препаратов, полученных на отходах производства биодизеля (60–475 мкг/мл).

Отметим, что литературные сведения об антимикробных свойствах поверхностно-активных веществ, синтезированных на промышленных отходах, немногочисленны, а установленные в данной работе МИК ПАВ *N. vaccinii* ИМВ В-7405 на порядки ниже, чем для известных из литературы препаратов. Так, руфисан, синтезированный *Candida lipolytica* UCP0988 на маслосодержащих отходах, в концентрации 6–12 мг/л проявлял антимикробные свойства по отношению к бактериям родов *Streptococcus* и *Lactobacillus*, однако практически не ингибировал рост *C. albicans, E. coli, Staphylococcus aureus, Pseudomonas aeruginosa* и *Staphylococcus epidermidis* [6].

Таблица 1 Минимальная ингибирующая концентрация ПАВ *N. vaccinii* ИМВ В-7405

	МИК (мкг/мл) по отношению к				
Субстрат	B. subtilis БТ-2 (споры)	B. subtilis БТ-2 (вегетативные клетки)	E. coli IEM-1	C. albicans Д-	
Масло после жарки мяса	H.o.	71	35	71	
Масло после жарки картофеля	67	11	8	33	
Рафинированное масло	21	21	10	42	
Технический глицерин	121	60	475	121	
Очищенный глицерин	75	300	600	150	

Примечание «H.o» - не определяли. При определении МИК погрешность не превышала 5 %

Таким образом, в результате проведенных исследований установлена возможность использования промышленных отходов для получения поверхностно-активных веществ *N.vaccinii* ИМВ В-7405 с высокими антимикробными свойствами.

Литература

- 1. Никитюк Л.В. Антиадгезивные свойства поверхностно-активных веществ, синтезированных в различных условиях культивирования Nocardia vaccinii ИМВ В-7405 / Л.В. Никитюк, И.В. Савенко // Современные проблемы биомедицинской инженерии : сб. материалов Всерос. молодежн. научн. конф. М.: Прондо, 2015. С. 364-367.
- 2. Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995 / J.M. Luna,

- R.D. Rufino, L.A. Sarubbo et al. // Curr. Microbiol. 2011. Vol. 62, N 5. P. 1527-1534.
- 3. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate / F.R. Accorsinily, M.R. Mutton, E.M. Lemos, M. Benincasa // Braz. J. Microbiol. 2012. Vol. 43, N 1.– P. 116-125.
- 4. Intensification of surfactants' synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium / T. Pirog, A. Sofilkanych, A. Konon et al. // Food Bioprod. Proces. 2013. Vol. 91, N 2.– P. 149-157.
- 5. Andrews J. Determination of minimum inhibitory concentrations / J. Andrews // J. Antimicrob. Chemother. 2001. Vol. 48, N 1. P. 5-16.
- 6. Rufino R.D. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988 / R.D. Rufino, J.M. Luna, L.A. Sarubbo // Coll. Surf. B. Biointerfaces. 2011. Vol. 84, N 1. P. 1–5. doi: 10.1016/j.colsurfb.2010.10.045.

РАЗРАБОТКА ПРИБОРА ДЛЯ КОНТРОЛЯ ФУНКЦИЙ НОЧНОГО ЭНУРЕЗА У ДЕТЕЙ

М.В. Кувшинова

Научный руководитель: к.с.х.н., доцент Т.Н. Позднякова

Пензенский государственный технологический университет, г. Пенза

Одной из основных медицинских, социальных и психологических проблем детей в возрасте старше четырёх лет является энурез — ночное недержание мочи. Данная проблема способствует развитию комплексов и эмоциональных расстройств, как у детей, так и у взрослых. По статистическим данным, в дошкольном возрасте частота энуреза

составляет 10 %, причём у мальчиков он регистрируется на 5 % чаще, чем у девочек. К началу школьного возраста энурез встречается у 4,5 % детей, а после 15 лет - лишь у 0,5 % [1,2]. Точная причина возникновения данного заболевания до конца не ясна. Врачи склоняются ко многим факторам, оказывающим негативное влияние на формирование патологии, таким как: психологический фактор, эндокринные нарушения, инфекционные процессы, родовая травма, психологическая травма, аллергия и отеки. Основные детей методы лечения энуреза V приведены на рис.1.

Наиболее эффективным средством лечения ночного недержания мочи у детей, признанным во всём мире, являются энурезные (мочевые) будильники. В среднем эффективность лечения с помощью энурезного будильника составляет 65-79 %.

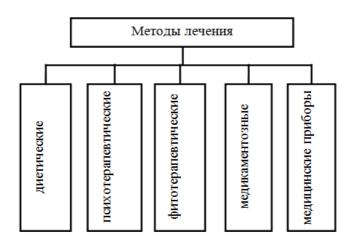


Рис. 1. Методы лечения энуреза

Принцип действия современных энурезных будильников основан на срабатывании звукового, светового или вибросигналов, заставляющих пациента проснуться при первых попаданиях капли мочи на датчик. Промышленность предлагает несколько типов ночных будильников, таких

как электрический будильник, будильник-коврик, проводной сигнализатор, клипсовый будильник и т.д.

Данные разработки имеют ряд недостатков, среди которых можно выделить такие как: сложность в подключении; громоздкость; раздражение электрическим током, которое может привести к ожогам; провода, мешающие ребёнку во время сна и т.д.

Поэтому перед нами стояла задача по разработке беспроводного будильника, устраняющего недостатки существующих приборов, помогающего детям справиться с недержанием мочи во время сна.

Главным преимуществом нашей разработки является то, что нет проводов, соединяющих датчик и будильник, что удобно в эксплуатации и не мешает ребёнку ночью. Датчик вшивается непосредственно в трусы и срабатывает при первых каплях попадания влаги на его поверхность. Стоимость данной разработки не превышает 500 рублей, что является немаловажным фактором при его приобретении, особенно для малобюджетной семьи [3].

Основные блоки разработки приведены на рис. 2.

Принцип действия будильника основан на том, что при попадании первых капель мочи на датчик влажности сработает приёмник, который подключается к розетке в удобном месте комнаты, где спит ребёнок, в результате будильник будет издавать звуковой сигнал до тех пор, пока ребёнок не встанет и не отключит его. Приемник может работать в радиусе примерно 10-20 метров. Постоянно повторяющиеся действия при срабатывании прибора на начало мочеиспускания постепенно тренируют мозг автоматически контролировать мочевой пузырь. В конечном счете, пациент будет просыпаться перед мочеиспусканием либо будет спать всю ночь без необходимости опорожнить мочевой пузырь.

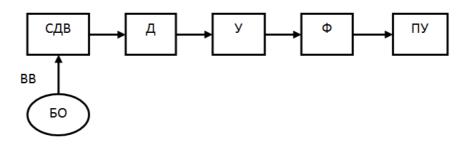


Рис. 2. Структурная схема беспроводного будильника

СДВ – сенсорный датчик влажности;

Д – датчик;

У – усилитель;

 Φ – фильтр;

ПУ – принимающее устройство;

ВВ – внешнее воздействие.

Таким образом, разработанный прибор позволяет контролировать функции ночного мочеиспускания у детей, помогает развить рефлекс просыпания при наполненном мочевом пузыре, не имеет побочных эффектов, а главное – недорогой, удобный и простой в применении.

Литература

- 1. Брязгунов И.П. Ночной энурез у детей и подростков: пособие для врачей / И.П. Брязгунов. М.: Медпрактика, 2006. 76 с.
- 2. Пугачев А.Г. Детская урология: руководство / А.Г.Пугачев. М.: ГЭОТАР-Медиа, 2009. 831 с.
- 3. Позднякова Т.Н. Разработка беспроводного будильника для контроля функций ночного энуреза у детей / Т.Н. Позднякова, М.В. Кувшинова // Информационные и управленческие технологии в медицине и экологии : материалы IX Всерос. науч.-техн. конф. Пенза: Приволжский дом знаний, 2015.

ВЛИЯНИЕ ФАКТОРОВ РОСТА И МИКРОЭЛЕМЕНТОВ В СРЕДЕ КУЛЬТИВИРОВАНИЯ ACINETOBACTER CALCOACETICUS ИМВ В-7241 НА АНТИАДГЕЗИВНЫЕ СВОЙСТВА ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

И.В. Савенко

Научный руководитель: д.б.н., профессор Т.П. Пирог

Национальный университет пищевых технологий, г. Киев

В предыдущих исследованиях [1] была установлена зависимость свойств антиадгезивных поверхностно-активных веществ (ΠAB) calcoaceticus ИМВ Acinetobacter B-7241 источника OT природы (этанол, углеродного питания глицерин, *н*-гексадекан) среде культивирования.

Ранее [2] было показано, что замена дрожжевого автолизата и смеси микроэлементов в составе этанол- и *н*-гексадекансодержащих сред на сульфат меди и сульфат железа, а в среде с глицерином – на хлорид калия, сульфат цинка и сульфат меди сопровождалась увеличением количества синтезированных штаммом ИМВ В-7241 поверхностно-активных веществ.

Поскольку полученные данные [1, 2] свидетельствуют о том, что в зависимости от условий культивирования продуцента могут изменяться не только показатели синтеза ПАВ, но и их биологические свойства, цель данной работы состояла в изучении влияния факторов роста и микроэлементов в среде культивирования *А. calcoaceticus* ИМВ В-7241 на антиадгезивные свойства синтезируемых ПАВ.

Культивирование штамма ИМВ B-7241 осуществляли в жидкой минеральной среде следующего состава (г/л): $(NH_2)_2CO - 0.35$, NaCl - 1.0, $Na_2HPO_4\cdot 12H_2O - 0.6$, $KH_2PO_4 - 0.14$, $MgSO_4\cdot 7H_2O - 0.1$, вода

дистиллированная — до 1 л, рН 6,8—7,0. В среду также дополнительно вносили дрожжевой автолизат — 0,5 % (по объему) и раствор микроэлементов — 0,1 % (по объему), содержащий (г/100 мл): $ZnSO_4 \cdot 7H_2O$ — 1,1; $MnSO_4 \cdot H_2O$ — 0,6; $FeSO_4 \cdot 7H_2O$ — 0,1; $CuSO_4 \cdot 5H_2O$ — 0,004; $CoSO_4 \cdot 7H_2O$ — 0,03; H_3BO_3 — 0,006; KI — 0,0001; EJTA (Трилон Б) — 0,5 [2].

В качестве источника углерода и энергии использовали глицерин (1 %, по объему), этанол и μ -гексадекан (2 %, по объему).

В одном из вариантов в среду с этанолом и n-гексадеканом вместо дрожжевого автолизата и раствора микроэлементов вносили Cu^{2+} (0,16 мкмоль/л) и Fe^{2+} (3,6 мкмоль/л), а в среду с глицерином – Zn^{2+} (38 мкмоль/л), Cu^{2+} (0,16 мкмоль/л) и K^+ в концентрации 0,21 ммоль/л, как описано ранее в работе [2]. Культивирование осуществляли в 750 мл колбах со 100 мл среды на качалке (320 об/мин) при 30 °C в течение 120 ч.

Для исследований использовали раствор ПАВ, выделенный экстракцией смесью Фолча (хлороформ и метанол, 2:1) из супернатанта культуральной жидкости [2].

В качестве тест-культур использовали бактерии (*Bacillus subtilis* БТ-2, *Escherichia coli* IEM-1) и дрожжи (*Candida albicans* Д-6). Степень адгезии микроорганизмов к пластику, поливинилхлориду, кафелю и стали определяли спектрофотометрическим методом, как описано в работе [3].

Эксперименты показали, что замена дрожжевого автолизата и микроэлементов на CuSO₄ и FeSO₄ в этанол- и *н*-гексадекансодержащей среде на KCl, CuSO₄ и ZnSO₄ в среде с глицерином, сопровождалась снижением в 1,5–2,0 раза антиадгезивных свойств синтезированных ПАВ. Так, например, адгезия тест-культур на абиотических поверхностях, обработанных поверхностно-активными веществами, синтезированными в среде с этанолом, дрожжевым автолизатом и микроэлементами, составляла 20–38 % (табл. 1). В то же время при обработке препаратами, полученными

при культивировании *A. calcoaceticus* ИМВ В-7241 в среде с этанолом, CuSO₄ и FeSO₄, адгезия повышалась до 33–51 %.

Таблица 1 Антиадгезивные свойства ПАВ, синтезированных на этаноле

Наличие в среде	Абиотическая	Адгезия (%)		
пази ше в ереде	Tionom leckum	B. subtilis	E. coli	C. albicans
культивирования	поверхность	БТ-2	IEM-1	Д-6
дрожжевого	пластик	26	31	31
автолизата и	поливинилхлорид	34	22	29
	кафель	38	29	35
микроэлементов	сталь	37	29	34
CuSO ₄ ,	пластик	47	46	51
Cu5O ₄ ,	поливинилхлорид	37	34	44
FeSO ₄	кафель	44	42	52
	сталь	33	48	49

Примечание: Концентрация ПАВ составляла 5 мкг/мл. При определении адгезии погрешность не превышала 5 %.

Отметим, литературные условий что данные 0 влиянии культивирования на биологические свойства поверхностно-активных веществ весьма ограничены и касаются в основном антимикробного действия ПАВ. Так, в работе [4] отмечается, что при культивировании Bacillus amylofaciens AR2 на декстрозе, сахарозе синтезируется смесь липопептидов (сурфактин, итурин, фенгицин), в то время как на мальтозе, лактозе и сорбитоле образуется только итурин. Максимальные антифунгальные свойства по отношению к микромицетам родов Fusarium, Cladosporium, Alternaria и др. проявляли ПАВ, образуемые на сахарозе и декстрозе.

Полученные нами данные свидетельствуют о том, что не всегда повышение синтеза ПАВ сопровождается образованием целевого продукта с необходимыми биологическими свойствами, а также о необходимости

исследований по зависимости свойств поверхностно-активных веществ от условий культивирования продуцента.

Литература

- 1. Савенко И.В. Влияние природы источника углерода в среде культивирования Acinetobacter calcoaceticus ИМВ В-7241 на антиадгезивные свойства поверхностно-активных веществ / И.В. Савенко // Актуальные вопросы биомедицинской инженерии : сб. материалов IV Всерос. науч. конф. для молодых ученых, студентов и школьников. Саратов: ООО «Издательский Центр «Наука», 2014. С. 67-70.
- 2. Влияние факторов роста и некоторых микроэлементов на синтез поверхностно-активных веществ Acinetobacter calcoaceticus IMB B-7241 / Т.П. Пирог, Т.А. Шевчук, О.Ю. Мащенко и др. // Микробиол. журнал. − 2013. Т. 75, № 5. С. 19–27.
- 3. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405 / T.P. Pirog, A.D. Konon, K.A. Beregovaya et al. // Microbiology. 2014. Vol. 83, N 6. P. 732–739.
- 4. Singh A.K. Substrate dependet in vitro antifungal activity Bacillus sp. Strain AR2 / A.K. Singh, R. Rautela, S.S. Cameorta // Microb. Cell. Fact. 2014. 13:67. doi: 10.1186/1475-2859-13-67.

БИОТЕХНИЧЕСКАЯ СИСТЕМА ПОЛИГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ С ИСПОЛЬЗОВАНИЕМ ЭЭГ СИГНАЛА

Е.М. Талеб, Р.В. Исаков

Научный руководитель: д.т.н., профессор Л.Т. Сушкова

Владимирский государственный университет имени А.Г. и Н.Г. Столетовых, г. Владимир

ЭЭГ сигнал несет разнообразную информацию о внутреннем состоянии человека и может быть использован в качестве детектора истинности той или иной информации.

Использование активности головного мозга, как психофизиологического метода оценки эмоционального напряжения, происходящего в мозге человека во время проверки истинности информации, может выявить скрываемую человеком информацию.

Разные области мозга отвечают за разные виды активности. Например, реакция на зрительные раздражители отражается в затылочной доле, а именно зрительной коре (visual cortex) [2]. Основываясь на активности зон мозга, можно, так или иначе, интерпретировать получаемые данные.

Исследование только одного физиологического показателя, как правило, не может дать однозначного ответа о состоянии исследуемого. Поэтому на практике применяется обычно так называемый полиэффекторный метод, заключающийся в одновременной записи и анализе целого комплекса показателей. Применение полиэффекторной методики позволяет значительно повысить надежность и достоверность оценки состояния исследуемого человека.

Все полиграфические системы в мире, в основном, устроены по одному принципу: фиксируется фон психофизиологических реакций человека И изменение фона после получения соответствующей информации (тестовые вопросы или визуальные образы). Компьютерная автоматическом режиме сравнивает анализирует полученные результаты, выдавая достоверность психофизиологического стресса при поступлении на испытуемого новой информации. стандартный набор психофизиологических каналов входит: дыхание, артериальное давление, кожно-гальваническая реакция, фотоплетизмограмма, тремор и другие.

Методика работы заключается в распознавании когнитивных вызванных потенциалов головного мозга, нахождении отклонений от нормы ритма дыхания и записи кожно-гальванической реакции во время стимуляции. В качестве когнитивного стимула был использован показ фотографий с изображением портретов людей.

Испытуемые. Исследование проведено на пятерых здоровых взрослых испытуемых (20-30 лет) с нормальным зрением (одна женщина, четыре мужчины).

Методика стимуляции. Испытуемые находились в сидячем положении в светоизолированном помещении. Перед испытуемым на расстоянии 120 см от глаз располагается экран компьютера, на котором производится показ лиц в случайном порядке каждую секунду. Прежде чем начинать автоматический показ, испытуемый запоминает одно лицо из ряда незнакомых лиц.

Затем производится фоновая регистрация в условиях покоя (без подачи стимула), которая служит опорным сигналом. На экране перед испытуемым с помощью разработанной программы производится автоматический показ лиц (визуальный стимул) и параллельно происходит

регистрация когнитивных вызванных потенциалов (КВП), КГР и дыхания (рис.1).

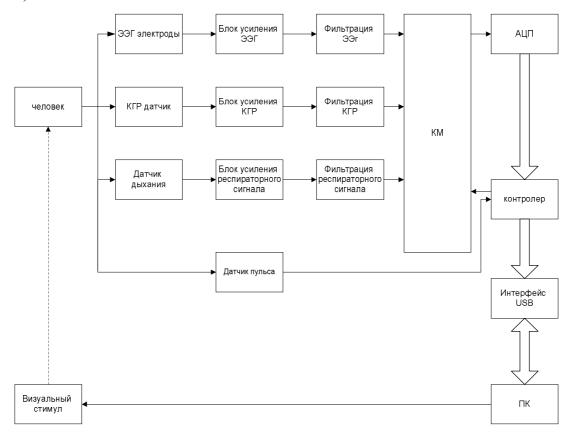


Рис. 1. Структурная схема системы

Регистрация ЭЭГ проводится непрерывно монополярно 16 электродов, расположенных ПО международной системе 10-20. ЭЭГ Использовался цифровой усилитель универсальными полиграфическими каналами NVX-36 с частотой дискретизации сигнала 1000 Гц/канал. Сопротивление электродов не превышало 5кОм. Полосу пропускания усилителей ограничивали полосой 0,5-30 Гц при помощи цифровых фильтров. Для регистрации кожно-гальванической реакции был параллельно подключен КГР датчик к дополнительному каналу и руки. К другому дополнительному на пальцах подключился датчик дыхания.

Данные записывались и обрабатывались в программах "PolyRec" и "EDFbrowser".

Результаты проведения эксперимента отражены на рис. 2. На данном рисунке вертикальные линии отделяют пять секундных отрезков.

Как видно на рисунке 2, на второй секунде был отмечен значимый стимул, который проявился в сильном всплеске мозговой активности (помечено буквой "а"), образовав комплекс когнитивных вызванных потенциалов (Р300). В это же время было зарегистрировано увеличение кожно-гальванической реакции и заметно уменьшение латентности цикла дыхания.

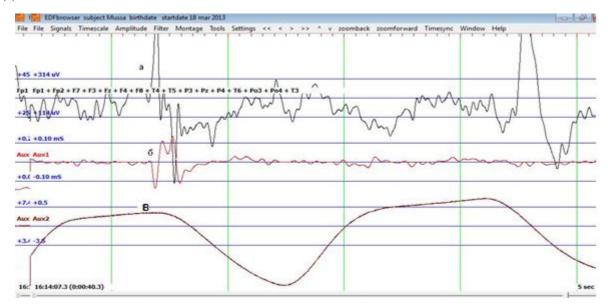


Рис. 2. Полиграмма с значимом стимулом:

$$a - ЭЭ$$
; $\delta - K\Gamma P$; $\epsilon - ритм дыхания$

Проведенное экспериментальное исследование показало, что при опознании визуальных значимых стимулов у обследуемого лица обнаруживается увеличение амплитуды вызванного потенциала (возникает КВП Р300), сокращение латентности дыхательного цикла и увеличение амплитуды КГР сигнала. Эти результаты дают возможность производить совершенствование аппаратуры инструментальной детекции лжи, но требуют дальнейших расширенных исследований. В данной работе планируется разработка экспериментального образца полиграфической системы, автоматизирующей подачу стимулов, регистрацию, обработку и

анализ полученной информации, что даст возможность получить объективные знания о возможности предложенного подхода.

Литература

- Белюшина О.В. Полиграф в суде и на предварительном следствии
 / О.В. Белюшина // Российский Полиграф, 2007. № 3.
- 2. Шмидт Р. Физиология человека / Р. Шмидт, Г. Тевс. М.: Мир, 1996. 323 с.
- 3. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике / В.В. Гнездицкий. Таганрог: ТРТУ, 1997. 102 с.

ВЛИЯНИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ВОЗДУХОПРОНИЦАЕМОСТЬ МАТЕРИАЛА НА ОСНОВЕ ВИСКОЗНОГО ВОЛОКНА

Ю.Д. Шакирова

Научный руководитель: к.х.н., доцент Р.Ю. Галимзянова

Казанский национальный исследовательский технологический университет, г. Казань

Вискозные волокна в настоящее время являются ОДНИМ важнейших текстильной промышленности. Ha видов сырья ДЛЯ сегодняшний день одни из самых популярных материалов в производстве медицинской одежды и изделий медицинского назначения – нетканые материалы на основе вискозы. Наиболее распространенный состав смесового полотна с вискозой – полиэстер (65 %), вискоза (35 %). Такая ткань является мягкой, шелковистой, приятной на ощупь [1].

Исходным сырьём для производства вискозы служит древесная целлюлоза, которая проходит несколько этапов переработки. Ее получают искусственным путём с применением химических веществ (каустической соды, дисульфида углерода, Na-соли ксантогената).

Материалы на основе вискозного волокна получили широкое распространение благодаря доступности исходного сырья и низкой стоимости химических реагентов, а также благодаря большим возможностям модификации [2].

обеспечения Для отсутствия различных микроорганизмов, провоцирующих разного рода инфекции, медицинские изделия должны стерилизоваться. Одним из самых популярных и подходящих методов для стерилизации медицинских изделий и материалов является метод радиационного облучения. Стерилизующим агентом при данном методе стерилизации могут быть проникающее электронное или гамма-излучение. Стерилизующая доза, обеспечивающая стерильность, обычно находится в диапазоне от 15 до 20 кГр и нормативными документами предписано осуществление строгого ее контроля. Максимально допустимая доза радиационной стерилизации зависит от многих параметров (вида изделия, характеристик радиационно-технической установки) и находится диапазоне от 40 до 75 кГр. Ее контроль осуществляется не так тщательно, как контроль стерилизующей дозы, и зачастую изделия получают дозу облучения (60 кГр и более), приводящую завышенную ухудшению свойств материала [3]. Как существенному основе вискозного волокна стойки к воздействию материалы на ионизирующего излечения до 50 кГр [4]. Поскольку при радиационной стерилизации поглощенная доза может составлять 60-70 кГр и, учитывая тот факт, что с каждым годом объемы производства и потребления стерильных изделий, в состав которых входит вискоза, растет, актуальной задачей является изучение влияния радиационного облучения в широком диапазоне поглощенных доз на свойства материала на основе вискозы.

Вследствие ЭТОГО проводилась оценка показателей воздухопроницаемости вискозного материала воздействия после электронным и гамма-излучением дозами от 20 до 60 кГр. Как известно, воздухопроницаемость – это способность материалов и конструкций пропускать воздух под влиянием перепада давления воздуха. Во многих областях материального производства воздухопроницаемость материала является одним из важнейших параметров, т.к определяет свойства конечного продукта [5].

Объектом исследований был выбран материал из 100 %-ного вискозного волокна. Образцы материалов были облучены дозами от 20 до 60 кГр на радиационно-технологической установке «Электронный стерилизатор» с ускорителем электронов УЭЛВ-10-10-с-70 (ИФХЭ РАН).

На рис. 1 представлены зависимости воздухопроницаемости материалов на основе вискозы от дозы радиационного облучения двух видов: электронного и гамма-излучения.

Рис.1. Зависимость воздухопроницаемости вискозного материала от дозы двух видов радиационного облучения

Полученные зависимости показывают, что разница между электронным и гамма-облучением невелика. Но имеется одна закономерность — воздухопроницаемость материалов, стерилизованных двумя видами ионизирующих излучений, не претерпевает существенных

изменений при дозах облучения до 40 кГр, при дозе же 60 кГр мы видим снижение показателей на 27,2 %. Это может свидетельствовать о деструкции вискозного материала при облучении дозой свыше 40 кГр.

Исследование выполнено при финансовой поддержке ФГБОУ ВПО КНИТУ.

Литература

- 1. Вискозное волокно [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/
- 2. Калмыкова Е.А. Материаловедение швейного производства: учеб. пособие / Е.А. Калмыкова. М.: Высшая школа, 2001. 412 с.
- 3. Радиационная стойкость [Электронный ресурс]. URL: http://www.xumuk.ru/encyklopedia/2/3778.html
- 4. Иванов В.С. Радиационная химия полимеров: учеб. пособие для вузов / В.С. Иванов. Л.: Химия, 1988. 320 с.
- 5. Воздухопроницаемость [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/

ФОРМИРОВАНИЕ СТРУКТУРЫ КОМПОЗИТА НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА ПРИ ВЗРЫВНОЙ ОБРАБОТКЕ

Л.Ю. Дробот, А.А. Кумарова Научные руководители: д.т.н., профессор Н.А. Адаменко, к.т.н., доцент Г.В. Агафонова

Волгоградский государственный технический университет, г. Волгоград

Политетрафторэтилен (ПТФЭ) обладает уникальным сочетанием свойств, а из-за его высокой стойкости к физиологическим средам и

отличной совместимости с организмом человека находит применение в медицине. Однако низкие значения прочности и износостойкости, высокая хладотекучесть сдерживают его более широкое использование. На современном этапе преодолеть технические недостатки ПТФЭ удается созданием композитов на его основе [1]. Например, композиции с близким по термостойкости, но с более высокой прочностью и твердостью полиарилатом (полиоксибензоилом, ПА) обладают более высокой износостойкостью и прочностью с температурой эксплуатации до 300°С [2].

Достигнуть более высокого уровня свойств композитов на основе термостойких полимеров удается использованием новых способов переработки. Перспективной для фторполимеров и композитов на их основе является технология взрывной обработки (ВО), реализующая в полимерных материалах различного рода структурные изменения [3-5].

Целью данного исследования являлось выявление закономерностей изменения структуры и свойств в композиции ПТФЭ с 30 % ПА при взрывной обработке (ВО).

Исследованные материалы были получены ВО при плоском нагружении скользящей ударной волной порошковой смеси ПТФЭ с 30 % ПА. Интенсивность взрывного воздействия варьировали применением различных типов взрывчатого вещества (ВВ) с изменением давления ВО от 0,9 до 4,6 ГПа. Анализ структуры и свойств композита проводили посредством микроструктурного и термомеханического анализов.

Исследование микроструктуры проводили на оптическом микроскопе Olympus BX-61. Исследование теплофизических характеристик и деформируемости материалов в широком интервале температур производили с помощью термомеханических испытаний на установке ТМИ – 1 при одноосном сжатии с нагрузкой 1 Н при скорости нагрева 5°С/мин.

Исследование микроструктуры прессовок композиций ПТФЭ с ПОБ (рис. 1) показало, что в зависимости от величины энергосилового воздействия реализуются различные механизмы ударного уплотнения полимерной смеси и взаимодействия компонентов. При низком давлении ВП (0,9 ГПа) микроструктура полученных образцов имеет практически такой же характер, как у статически спрессованных материалов (рис. 1, а).

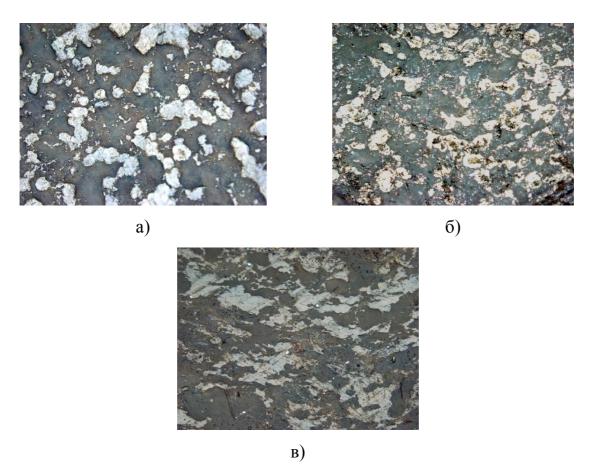


Рис. 1. Микроструктуры композиций 70 % ПТФЭ+30 % ПОБ после ВО давлением (х200): 0,9 ГПа – а; 2,8 ГПа – б; 4,6 ГПа – в

При давлении 2,8 ГПа осуществляются переукладка подвижных порошковых частиц (структурная деформация), сближение частиц и смятие их контактов, приконтактная деформация. На микроструктурах композиций визуализируется упорядоченное расположение частиц порошков вдоль распространения ударного фронта (рис. 1, б). Повышение

давления до 4,6 ГПа приводит к максимальной деформации полимерных частиц, они заметно сплющиваются по направлению ударного сжатия и растекаются в поперечном направлении (рис. 1, в). Уплотнение композиций происходит за счет деформации и ориентации полимеров вдоль ударного фронта.

Проведенные термомеханические испытания показали (рис. 2), что взрывная обработка приводит к увеличению относительной деформации композита при нагреве в 1,5 раза, снижению температуры начала интенсивной деформации t_p с 319 до 303 °C, а температуры текучести t_r с 384 до 376°C при повышении давления с 0,9 до 4,6 ГПа. Наименьшими t_p (303 °C) и t_r (376°C) обладает материал, полученный P=4,6 ГПа, что свидетельствует о значительных структурных изменениях в композите при высоком давлении ВО и подтверждает проведенные микроструктурные исследования.

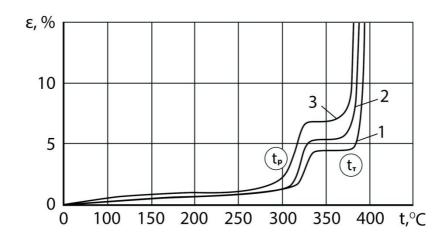


Рис. 2. Термомеханические кривые ПКМ ПТФЭ+30% ПА после ВО давлением: 1- P=0,9 ГПа; 2- 2,8 ГПа; 3- 4,6 ГПа

Заключение

В результате исследований установлена возможность управления структурной упорядоченностью, влияющей на изменение

термомеханических свойств композита ПТФЭ с 30 % ПА путем изменения давления в ударном фронте.

Исследование выполнено при финансовой поддержке гранта РФФИ и Администрации Волгоградской области (15-43-02244).

Литература

- 1. Бузник В.М. Библиометрический анализ научных публикаций по фторполимерам / В.М. Бузник, И.В. Зибарева // Высокомолекулярные соединения. А. 2011. Т. 53, №11. С. 1977-1987.
- 2. Охлопкова А.А. Пластики, наполненные ультрадисперсными неорганическими соединениями / А.А. Охлопкова, А.В. Виноградов, Л.С. Пинчук. Гомель: ИМС НАНБ, 1999.– 164 с.
- 3. Ударно-волновая обработка полимеров и полимерных композиций/ Н.А. Адаменко, Ю.П. Трыков, А.В. Фетисов, Г.В. Агафонова //Физика и химия обработки материалов. 2006. №5.— С. 82-87.
- 4. Влияние конструктивного построения схемы взрывного прессования на свойства полиоксибензоила / Н.А. Адаменко, Г.В. Агафонова, В.Д. Рогозин и др. // Известия ВолгГТУ. Серия «Проблемы материаловедения, сварки и прочности в машиностроении». Вып. 7 : межвуз. сб. науч. ст. / ВолгГТУ. Волгоград, 2013. № 6 (109). С. 108-112.
- 5. Structure and property formation of composite materials on the basis of polytetrafluoroethylene under the explosive processing / H.A. Адаменко, А.В. Казуров, Г.В. Агафонова и др. // Procedia Engineering. 2015. Vol. 113. C. 418-422.

АНТИМИКРОБНОЕ ДЕЙСТВИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ ACINETOBACTER CALCOACETICUS ИМВ В-7241 НА НЕКОТОРЫЕ УСЛОВНО-ПАТОГЕННЫЕ БАКТЕРИИ

Д.В. Андрейко

Научный руководитель: д.б.н., профессор Т.П. Пирог

Национальный университет пищевых технологий, г. Киев

К опасным условно-патогенным микроорганизмам относятся бактерии родов *Proteus*, *Staphylococcus*, *Pseudomonas* и *Enterobacter*, которые могут стать причиной различных заболеваний [2, 3, 5, 6].

Повышение резистентности микроорганизмов к антибиотикам и другим биоцидам способствовало поиску новых эффективных антимикробных средств. Из литературы известно [1], что микробные поверхностно-активные вещества (ПАВ) обладают антимикробными свойствами.

Ранее установлено антимикробное действие ПАВ Acinetobacter calcoaceticus ИМВ В-7241 по отношению к фитопатогенным бактериям [4].

Цель данной работы – изучение действия ПАВ *A. calcoaceticus* ИМВ В-7241, синтезированных в различных условиях, на некоторые условнопатогенные бактерии.

ПАВ, Для исследований использовали синтезированные штаммом ИМВ В-7241 в жидкой минеральной среде, содержащей в качестве источника углерода этанол, н-гексадекан И глицерин. Поверхностно-активные вещества выделяли супернатанта ИЗ культуральной жидкости экстракцией смесью Фолча (хлороформ:метанол, 2:1). В качестве тест-культур при определении антимикробных свойств ПАВ использовали бактерии: *Proteus vulgaris* БТ-1, *Staphylococcus aureus* БМС-1, *Pseudomonas aeruginosa* П-55, *Enterobacter cloacae* АС-22. Антимикробные свойства поверхностно-активных веществ определяли по показателю минимальной ингибирующей концентрации (МИК), который устанавливали методом двукратных серийных разведений в мясопептонном бульоне (МПБ). Результаты оценивали визуально по помутнению среды: (+) — пробирки, в которых наблюдали помутнение среды (рост тест-культуры), (–) — помутнения не было (рост отсутствует). МИК рассчитывали как среднее значение между концентрациями ПАВ в последней пробирке, где рост отсутствовал, и в первой, где он наблюдался.

Установлено, что антимикробные свойства ПАВ *А. calcoaceticus* ИМВ В-7241 зависят от природы источника углеродного питания в среде культивирования продуцента (табл. 1).

Таблица 1 Минимальная ингибирующая концентрация ПАВ А. calcoaceticus IMB В-7241, синтезированных на этаноле, н-гексадекане и глицерине

	МИК (мкг/мл) по отношению к			
Субстрат	P.vulgaris БТ-1	E. cloacae AC-22	S.aureus БМС-1	P.aeruginosa П-55
Этанол	75	75	75	37,5
Глицерин	34	34	67,5	34
н-Гексадекан	27	27	108	108

Результаты исследований показали, что наиболее эфективными антимикробными агентами по отношению к исследуемым тест-культурам

оказались ПАВ, синтезированные на этаноле и глицерине (МИК 34,0-75 мкг/мл), в то время как ПАВ, полученные при культивировании штамма ИМВ В-7241 на μ -гексадекане, ингибировали рост исследуемых бактерий в более высоких (27-108 мкг/мл) концентрациях.

Полученые данные свидетельствуют о возможности использования поверхностно-активных веществ *А. calcoaceticus* ИМВ В-7241 в качестве антимикробных агентов в составе новых дезинфицирующих препаратов. Кроме того, результаты работы свидетельствуют о необходимости исследования влияния условий культивирования на антимикробные свойства синтезированных метаболитов.

Литература

- 1. Антиадгезивные свойства поверхностно-активных веществ Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB AC-5017 и Nocardia vaccinii IMB B-7405 / Т.П. Пирог, А.Д. Конон, К.А. Береговая, М.А. Шулякова // Микробиология. 2014. Т.4, №6. С. 631-639.
- 2. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs / K. Cihalova, D. Chudobova, P. Michalek et al. // Int. J. Mol. Sci. 2015. Vol.16, № 10. doi: 10.3390/ijms161024656.
- 3. Which microbial factors really are important in Pseudomonas aeruginosa infections? / A. Crousilles, E. Maunders, S. Bartlett et al. // Future Microbiol. 2015. doi: 10.2217/fmb.15.100.
- 4. Pokora K.A. Antimicrobial activity of exocellular metabolites Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV AC-5017, Nocardia vaccinii K-8 on phytopathogenic bacteria / K.A. Pokora, K.V. Chebotarova // Ukr. Food J. − 2012. − Vol. 1, № 2. − P. 35-38.

- 5. Enterobacter cloacae infections after anterior cervical decompressions and fusion: case study and literature review / H. Wang, L.Wang, Y.Yang et al. // Int. J. Clin. Exp. Med. 2015. Vol.8, №3.
- 6. Wang Y. Bacteria: Proteus / Y. Wang, X. Pan // Encyclopedia of Food Safety. 2014. Vol. 1. P. 486-489.

ПОДХОДЫ К АНАЛИЗУ БИОРИТМОВ ЧЕЛОВЕКА

Т.В. Арутюнян, Т.К. Бородовицына, А.Н. Омельченко, В.И. Полусмак Научный руководитель: д.т.н., доцент И.А. Парфенова

Кубанский государственный университет, г. Краснодар

Темпы научно-технического прогресса приобретают стремительный характер и предъявляют серьезные требования к человеку. Любой живой организм на Земле подчиняется законам биоритмов и у каждого он индивидуальным. Выделяют три биоритма: физический, является Они эмоциональный интеллектуальный. характеризуют И предрасположенность К физической активности, эмоциональной восприимчивости и интеллектуальной деятельности в тот или иной день. Знание влияния электромагнитных полей, излучаемых устройствами, человеку правильно распределить позволяет его потенциалы определенные дни, чтобы достичь наилучших результатов. Наукой, изучающей биоритмы, является биоритмология [1]. Выделим следующие важные достижения биоритмологии [2]:

1) Биологические ритмы обнаружены на всех уровнях организации живой природы – от одноклеточных до биосферы. Это свидетельствует о том, что биоритмика – одно из наиболее общих свойств живых систем.

- 2) Биологические ритмы признаны важнейшим механизмом регуляции функций организма, обеспечивающим гомеостаз, динамическое равновесие и процессы адаптации в биологических системах.
- 3) Биологические ритмы имеют эндогенную природу И генетическую регуляцию, ИΧ осуществление тесно связано c модифицирующим фактором внешней среды, так называемых датчиков времени.
- 4) Сформулированы положения о временной организации живых систем, одним из основных принципов биологической организации.
- 5) Обнаружены биологические ритмы чувствительности организмов к действию факторов химической и физической природы. Это стало основой для развития хронофармакологии, т.е. способов применения лекарств с учетом зависимости их действия от фаз биологических ритмов функционирования организма и от состояния его временной организации, изменяющейся при развитии болезни.
- 6) Закономерности биологических ритмов учитывают при профилактике, диагностике и лечении заболеваний.

Для расчета трех биоритмов используется формула:

$$B = \sin\left(\frac{2*\pi*t}{P}\right)*100\%$$

где B — состояние биоритма в %;

t – количество прожитых дней от дня рождения;

P —периодичность рассчитываемого биоритма (для физического он составляет 23 дня, для эмоционального — 28 дней и для интеллектуального — 33 дня).

В среде Borland Builder 6.0 на языке программирования С++ разработана программа «БИО-Ритмы». Интерфейс состоит из 4 панелей (рис.1). В первой панели задаются дата рождения и расчетная дата, а также отображается количество прожитых дней. Вторая панель — это панель

управления. Она содержит выбор параметров для отображения графика, кнопку вычисления биоритмов и кнопку экспорта графика в изображение формата bmp. Третья панель — это панель отображения показателей всех рассчитанных биоритмов на расчетный день. И четвертая панель — это панель графического представления биоритмов на 31 день. В расчет включен общий показатель состояния всех трех биоритмов, который вычисляется по формуле:

$$B_{\text{общ}} = \frac{B_{\phi \text{из}} + B_{\text{sмo}} + B_{\text{инт}}}{3},$$

где $B_{\text{общ}}$ — среднее значение суммы $B_{\text{физ}},\,B_{\text{эмо}}$ и $B_{\text{инт}},\,\%;$

 $B_{\Phi^{\text{MB}}}$ – состояние физического цикла, %;

 B_{3MO} – состояние эмоционального цикла, %;

 $B_{\text{инт}}$ – это состояние интеллектуального цикла, %.

В исследованиях принимали участие испытуемые разного рода деятельности, которые в течение 31 дня вели дневники, а в конце каждого дня описывали более подробно свое состояние за день. В своих дневниках они каждый день отмечали, чем занимались в течение дня и общее состояние за весь день по шкале от –2 до 2. Для каждого испытуемого программа формирует график сопоставления общей оценки состояния с рассчитанными состояниями физического, эмоционального и интеллектуального циклов (рис. 2).

Общая оценка состояния произведена на каждый день. На графике видно, что в первые анализируемые дни все три цикла находятся в положительной фазе, чему и соответствует общая оценка состояния испытуемого. День перехода эмоционального цикла из одной фазы в другую называется эмоциональным критическим днем, а переход физического цикла – физическим критическим днем.

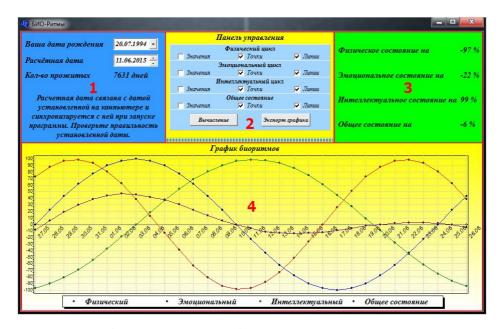


Рис. 1. Графический интерфейс программы «БИО-Ритмы»

Именно в критические дни с людьми чаще всего происходят несчастные случаи, эмоциональные срывы. Программа позволяет рассчитать количество прожитых дней до определенной расчетной даты, которую пользователь может задать; узнать состояние биоритмов в процентах на день, указанный в расчетной дате; изучить на графике поведение биоритмов в период, равный 31 дню; экспортировать графики в изображение формата bmp.

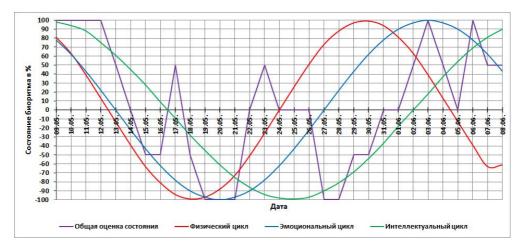


Рис. 2. Сопоставление общей оценки состояния с рассчитанными состояниями физического, эмоционального и интеллектуального циклов

На основе данных испытуемых и данных, полученных при расчете трех биоритмов, были выявлены некоторые закономерности влияния электромагнитных полей и других факторов, влияющих на биологические ритмы человека.

Литература

- 1. Агаджанян Н. А. Биоритмы, спорт, здоровье / Н.А. Агаджанян М.: Физкультура и спорт, 1989.- 207 с.
- 2. Сущность биоритмов, их роль и функции в жизни человека. (Pyc.) URL: http://bibliofond.ru/view.aspx?id=510348

РАДИОФИЗИЧЕСКАЯ УСТАНОВКА - МОДЕЛЬ СИСТЕМЫ БАРОРЕФЛЕКТОРНОЙ РЕГУЛЯЦИИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Д.Д. Кульминский 1 , Ю.М. Ишбулатов 2 , Е.И. Боровкова 2 , В.С. Хорев 2 , А.С. Караваев 1

Научный руководитель: д.ф.-м.н., профессор В.И. Пономаренко¹

¹Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН, г. Саратов
²Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, г. Саратов

Повышение качества диагностики является одной из наиболее важных задач современной медицины. Поэтому разработка современных методов, направленных получение любой дополнительной на наиболее диагностической информации, является одним ИЗ перспективных направлений современной неинвазивной диагностики в кардиологии [1-4].

В ходе работы создана радиофизическая установка, моделирующая работу системы барорефлекторной регуляции артериального давления согласно современным представлениям [5]. Установка представляет собой гибридный автогенератор с запаздывающей обратной связью, функционирующий в периодических режимах. Нелинейный элемент и линия запаздывания реализованы в цифровом виде на базе ARM микроконтроллеров cядром программируемых ATSAM3X8E, а инерционность артериальных сосудов моделируется RC-фильтром. Структура созданной аналоговым радиофизической системы соответствует модельным представлениям, предложенным в работах [6, 7].Динамика моделирующей системы описывается дифференциальным уравнением первого порядка с запаздыванием. Разработанная радиофизическая модель обеспечивает модуляцию параметров генератора по заданному закону. Также моделируются неизбежные искажения биосигнала в измерительном тракте за счёт введения линейного преобразования выходного сигнала и измерительного Данные, генерируемые созданной экспериментальной шума. радиофизической установкой, были проанализированы наряду реальными данными, полученными в эксперименте. По результатам радиофизической сопоставления выбраны параметры установки, обеспечивающие наилучшее воспроизведение спектральных характеристик экспериментального сигнала. Установка допускает функционирование В неавтономном режиме ДЛЯ моделирования воздействия на исследуемую систему регуляции сигнала дыхания.

В ходе проведенных исследований показана возможность динамической реконструкции параметров модельного уравнения системы с помощью методов, развиваемых в работах [8, 9], и подходов, предложенных ранее в [10, 11].

Показано, что предложенная модель демонстрирует эффекты синхронизации сигналом линейно нарастающей частоты, что соответствует полученным нами ранее в физиологических экспериментах результатам [12, 13].

Таким образом, была разработана и создана радиофизическая установка, моделирующая работу системы барорефлекторной регуляции артериального давления человека и учитывающая воздействие на эту систему сигнала дыхания. Проведенный анализ данных, полученных в ходе радиофизического и биологического экспериментов, позволяют считать разработанную установку перспективной для анализа экспериментальных данных исследуемой системы барорефлекторной регуляции, а также рассчитывать на успех применения данного подхода для моделирования развития патологических процессов, учета влияния физиологических тестов и приема лекарственных препаратов.

Исследование выполнено при финансовой поддержке гранта РФФИ № 15-02-03061, гранта Президента РФ МД-4368.2015.7.

Литература

- 1. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем / Р.М. Баевский, Г.Г. Иванов, Л.В. Чирейкин и др.// Вестник аритмологии. -2001. -Т. 24. С. 65-87.
- 2. The value of exercise treadmill test in evaluation of coronary artery disease / L. Mao, X. Li, L. Zhong, S. Wei // Russian Open Medical Journal. 2012. Vol.1. P. 0306.
- 3. Relationship between Duke Treadmill Score and platelet volume indices in predicting coronary artery disease / R. Kutlu, M.E. Memetoğlu, T.M. Murataliev et al. // Russian Open Medical Journal. 2015. Vol. 4. P. e0402.

- 4. Хорев В.С. Перспективы применения методов анализа взаимодействий к временным рядам колебаний сердечно-сосудистой системы / В.С. Хорев, А.В. Плуталова // Бюллетень медицинских интернет-конференций. 2015. Т. 5. № 11. С. 1439-1440.
- 5. Киселев А.Р. Колебательные процессы в вегетативной регуляции сердечно-сосудистой системы / А.Р. Киселев, В.И. Гриднев // Саратовский научно-медицинский журнал. 2011. Т. 7. № 1. С. 34-39.
- 6. Ringwood J.V. Slow oscillations in blood pressure via a nonlinear feedback model / J.V. Ringwood, S.C. Malpas // American Journal of Physiology Regulatory, Integrative and Comparative Physiology. 2001. Vol. 280. P. 1105.
- 7. First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats / D.E. Burgess, J.C. Hundley, D.R. Brown et al. // American Journal of Physiology. 1997. Vol. 273. P. R1878-R1884.
- 8. Сопоставление методов оценки времени запаздывания систем с задержкой по зашумленным периодическим реализациям / Ю.М. Ишбулатов, А.С. Караваев, В.И. Пономаренко и др. // Ученые записки физического факультета МГУ. -2015. -№ 4. С. 154319-1-154319-4.
- 9. Сравнение методов оценки параметров системы барорефлекторного контроля среднего артериального давления / Ю.М. Ишбулатов, А.С. Караваев, В.И. Пономаренко и др. // Известия РАН. Серия физическая. -2016. –Т. 80. -№ 2. -С. 214–220.
- 10. Reconstruction of time-delay systems from chaotic time series / B.P. Bezruchko, A.S. Karavaev, V.I. Ponomarenko, M.D. Prokhorov // PRE. 2001. Vol. 64. P. 056218.
- 11. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям / В.И. Пономаренко,

- М.Д. Прохоров, А.С. Караваев, Б.П. Безручко // ЖЭТФ. –2005. –Т. 127. В. 3. –С. 515–527.
- 12. Synchronization of low-frequency oscillations in the human cardiovascular system / A.S. Karavaev, M.D. Prokhorov, V.I. Ponomarenko et al. // CHAOS. 2009. Vol.19. P. 033112.
- 13. Фазовый и частотный захват 0,1 Гц колебаний в ритме сердца и барорефлекторной регуляции артериального давления дыханием с линейно меняющейся частотой у здоровых лиц / А.С. Караваев, А.Р. Киселев, В.И. Гриднев и др. // Физиология человека. -2013. –Т. 39. -№ 4. –С. 105-111.

ОБРАБОТКА ЦИФРОВЫХ ТОМОГРАММ ДЛЯ АВТОМАТИЗИРОВАННОЙ БАЗЫ ЗНАНИЙ

Т.В. Арутюнян, Т.К. Бородовицына, А.И. Маногаров, А.В. Михайлов, В.И. Полусмак, Д.Д. Цой Научный руководитель: д.т.н., доцент И.А. Парфенова

Кубанский государственный университет, г. Краснодар

МРТ информация из локализованной области в живой ткани дает ценные метаболические данные, которые непосредственно связаны с состоянием здоровья ткани и могут использоваться для мониторинга ткани. МРТ используется в качестве инструмента визуализации, обеспечивающего анатомические и патологические информации.

Как и с любым другим устройством томографических изображений, МРТ сканер выдаёт многомерный массив данных, представляющий пространственное распределение некоторой измеренной физической величины. Но в отличие от многих из них, МРТ может генерировать двумерные секционные изображения при любой ориентации, трехмерные

объемные изображения, ИЛИ четырехмерные изображения, даже представляющие пространственно-спектральное или пространственновременное распределение. Механические инструменты не участвуют в визуализации этих образов. Сигналы, используемые для изображения, формируются непосредственно от самого объекта. МРТ является одной из форм эмиссионной томографии, похожей на позитронно-эмиссионную томографию (ПЭТ) и компьютерную томографию (ОФЭКТ). Но в отличие от ПЭТ или ОФЭКТ, МРТ не использует инъекций радиоактивных изотопов в объект, необходимый для генерации сигнала. Визуализация процесса не связана с потенциально вредным воздействием. Однако, из-за уникальной схемы визуализации и в результате пространственного разрешения, МРТ не ограничивается одним диапазоном радиочастот (РЧ).

Существует три главных метода пространственной локализации, каждый из которых использует градиентные магнитные поля, комбинируя их в импульсных последовательностях: выбор среза, частотное и фазовое кодирование.

Выбор среза — это метод, при котором выбираются РЧ возбуждения, поэтому сигнал ограничен определенным срезом внутри образца. Он достигается применением возбудительного РЧ импульса одновременно с градиентным, перпендикулярно выбранному срезу. Если необходимо получить изображение среза в ХҮ плоскости, то выбранный градиент нужно применять ортогонально этой плоскости, то есть в плоскости Z. Эффект от градиента — это создание резонансной частоты как функции от позиции вдоль направления Z.

РЧ импульс — это не просто включение и выключение радиоволн, а формирование их, то есть такая амплитудная модуляция, которая содержит узкую полосу частот, близких к основной частоте магнита.

Применение новых эффективных способов обработки изображений с помощью вейвлет-преобразований позволяет легко выявлять все

локальные особенности функций, сигналов и изображений с привязкой их ко времени или координатам пространства. Вейвлет-преобразование сигнала состоит в его разложении по базису, сконструированному из обладающей определенными свойствами функции (вейвлета) посредством масштабных изменений и переносов. Каждая из функций этого базиса характеризует как определенную пространственную (временную) частоту, так и ее локализацию в физическом пространстве (времени). В результате появляется возможность анализировать свойства сигнала одновременно в физическом (время, координата) и частотном пространствах.

С каждым вейвлетом можно связать несколько фильтров. При разложении сигнала на низкочастотную И высокочастотную составляющие используются два фильтра разложения, которые определенным образом связаны с масштабирующим фильтром W. При реконструкции сигнала используются еще два фильтра, которые также вычисляются по масштабирующему фильтру W. К масштабирующим фильтрам относятся вейвлет-фильтры Добеши, симлеты, койфлеты, биортогональные и обратные биортогональные сплайновые фильтры. Выбор конкретного вейвлета во многом определяется исследуемым сигналом и задачами анализа. Учитывая характерные особенности различных вейвлетов во временном и в частотном пространствах, можно выявлять в анализируемых сигналах те или иные свойства, которые незаметны на их графиках, особенно в присутствии сильных шумов [1].

При анализе сигнала прежде всего выбирается соответствующий базис. В большинстве случаев приходится иметь дело с сигналами, которые представлены квадратично-интегрируемыми функциями, определенными на вещественной оси (или квадратично-суммируемыми последовательностями комплексных чисел). Выбор анализирующего вейвлета не определен заранее, его следует выбирать в соответствии с решаемой проблемой. Вейвлет Хаара — простейший ортогональный

дискретный вейвлет, порождающий ортонормированный базис [2] и широко используемый в функциональном анализе. Для декомпозиции сигнала используются две функции. Одна — это аппроксимирующая функция, которая у вейвлета Хаара равна +1 на всем компактном носителе, и детализирующая функция, задающая порядок применения приращений сигнала, причем ее значение +1 означает сложение, а –1 – вычитание.

Недостатками вейвлета Хаара являются негладкость, т.е. резкие границы в пространстве времени, вследствие чего возникают бесконечные убывающие «хвосты», а также отсутствие симметрии форм. Несмотря на это, он имеет компактный носитель и обеспечивает возможность точной декомпозиции и синтеза любого сигнала [3].

Вейвлеты Хаара не обладают достаточно хорошей локализацией по частоте. Желательно использовать вейвлеты, обладающие лучшей регулярностью, которые по сравнению с вейвлетами Хаара приводили бы к меньшему числу отличных от нуля коэффициентов, которые надо учитывать.

При формировании базисного набора математических методов автоматизированной обработки и анализа цифровых томограмм следует использовать вейвлеты Добеши, так как хранение и скорость передачи сигнала могут быть более эффективны и параметрически достоверны. Данный вывод позволил создать модель сигнального интерфейса для автоматизированной базы знаний томографических исследований, разрабатываемой на ФТФ Кубанского государственного университета для диагностического комплекса ГБУС ДККБ МЗ КК.

Литература

- 1. Блатер К. Вейвлет-анализ. Основы теории / К. Блатер. М.: Техносфера, 2004. 273 с.
 - 2. Воскобойников Ю.Е. Адаптивный алгоритм фильтрации

изображений и преобразования их в векторный формат / Ю.Е. Воскобойников, А.Б. Колкер // Автометрия. — 2002. - T. 38. - N = 4. - C. 15-21.

Дремин И.М. Вейвлеты и их использование / И.М. Дремин, О.В. Иванов, В.А. Нечитайло // Успехи физических наук. – 2001. – Т.171. – №5. С. 465-501.

ВОЗМОЖНОСТИ БИОТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ ТРАНСГЕННЫХ РАСТЕНИЙ, ПРОДУЦИРУЮЩИХ АНТИГЕНЫ ВИРУСА ГЕПАТИТА В

Е.В. Морьева

Научный руководитель: к.б.н., доцент О.И. Скроцкая

Национальный университет пищевых технологий, г. Киев

Вирусный гепатит В является одной из самых распространенных инфекций среди людей и является причиной острого и хронического гепатита. Он опасен своими последствиями: гепатит В является одной из основных причин цирроза печени и главной причиной печеночно-клеточного рака печени [1].

Против гепатита В существуют следующие поколения вакцин:

- I на основе очищенного HBsAg, полученного из плазмы крови больных хронической гепатитной инфекцией (состав антигенов: HBsAg (S, preS);
- II рекомбинантная, на основе экспрессии в клетках дрожжей Sобласти антигена (состав антигенов: HBsAg (S);

 III – рекомбинантная, на основе экспрессии preS и S области антигена в дрожжах или перевиваемых клетках млекопитающих (состав антигенов: HBsAg (S, preS);

IV – рекомбинантная, на основе экспрессии в дрожжах preS, S и сог антигенов. Вакцина полиэпитопна, поскольку содержит все структурные антигены вируса (состав антигенов: HBsAg (S, preS), HBcAg (cor) [2].

Одним из перспективных направлений лечения гепатита В является использование вакцинопрепаратов, которые были созданы с помощью трансгенных растений, клетки которых продуцировали конкретные антитела (мукозальная иммунизация). В качестве трансгенных растений могут быть использованы такие культуры растений, как: картошка, табак, банан и другие сельскохозяйственные культуры (табл. 1).

Преимуществами использования мукозальной иммунизации есть то, что стенки клеток растений обеспечивают эффективную защиту находящегося в них антигена после его попадания в ротовую полость человека, проглатывания и последующего прохождения через желудок. Таким образом «упакованный» антиген в целости и сохранности достигает кишечника, где и представляется мукозальной иммунной системе [3].

Структурная идентичность и иммуногенность антигена, синтезированного в растениях, была показана еще в 1992 году, когда были получены трансгенные растения табака, продуцирующие поверхностный антиген вируса гепатита В HBsAg [4].

В этом же году были генетически трансформированы табачные растения с геном, кодирующим антиген вируса гепатита В, который был связан с номинальным промотором. Фермент связан иммунологически с использованием моноклонального антитела направлен против человеческого сывороточного HBsAg показал наличие HBsAg в экстрактах трансформированных листьев. Это говорило о том, что не было ни одного препятствия транскрипции либо трансляции этого гена в растениях [5].

Таблица 1 Биотехнологические особенности генной модификации растений для получения «съедобных» вакцин против гепатита В

Растение	Биотехнологические особенности	Поверхностный
	генной модификации	антиген
Табак	Ген был введен в векторную плазмиду с помощью Agrobacterium tumefaciens, также с неомицин-транферазой, которые позволяют проводить трансформацию с канамицином	HBsAg
Картофель	Ген HBsAg интегрировали в вектор pHB114, который ввели в клетки Agrobacterium tumefaciens, далее ген был использован для трансформации картофеля Solanum tuberosum	HBsAg
Банан	НВsAg был клонирован в вектор цветной капусты, в результате была получена конечная конструкция рВHsAg. рВHsAg ген был получен с помощью <i>E. coli</i>	HBsAg

Оральную иммуногенность рекомбинантного поверхностного антигена HBsAg гепатита В, полученного с использованием дрожжей, сравнивали с антигеном в трансгенном картофеле. Холерный токсин был использован увеличения иммунного ответа. Трансгенный ДЛЯ растительный материал, который содержал HBsAg, индуцировал первичный иммунный ответ и проявлялся в реакции мышей на повторное парентеральное введение HBsAg. Электронная микроскопия показала, что HBsAg накапливается внутриклеточно. То есть можно сказать, что природная биогерметизация антигена может обеспечить защиту от деградации в желудочно-кишечном тракте к деградации растительных клеток в кишечнике. У мышей, которых кормили трансгенным картофелем, выработанные HBsAg-специфические антитела в сыворотке крови превышали защитный уровень, и на парентеральное введение генерировался сильный иммунный ответ вторичным антителом [6].

Пероральную иммуногенность рекомбинантного поверхностного антигена HBsAg гепатита В в доклинических исследованиях на животных проводили и в 2000 году. Мышей кормили трансгенными HBsAg картофеля, что показало первичный иммунный ответ (увеличение HBsAg специфического антитела) в сыворотке крови, что может значительно повысить внутреннюю брюшную доставку одной субиммуногенной дозы вакцины. Поскольку растения с геномом HBsAg могут быть новым средством для оральной иммунизации против гепатита, в данных исследованиях ожидали высшего результата. Однако с этой целью требуется большая экспрессия генов, нежели была использована [7].

В 2009 году в качестве съедобных вакцин были использованы бананы. Ген HBsAg был выявлен с помощью ПЛР-анализа и его экспрессия была протестирована с помощью специфических поликлональных антител, направленных против человеческой сыворотки с HBsAg. Это показало возможность получения чужеродных антигенов в растениях для возможности использования пероральной вакцины [8].

Следовательно, получение «съедобных вакцин» против гепатита В является одним из перспективных направлений современной биотехнологии и, возможно, вскоре эти новые препараты найдут свое место в общей системе защиты от вирусных патогенов.

Литература

- 1. Чавыкина О.Е. Вирусный гепатит А, В, С. / О.Е. Чавыкина [Электронный ресурс]. 2014. Режим доступа к статье: http://kzpo.io.ua/s855200/virusniy_gepatit_a_v_s.
- 2. Вакцины против гепатита В // Weekly Epidemiologikal record. 2004. № 28. Р. 4-5.
- 3. Щелкунов С. Съедобные растительные вакцины / С. Щелкунов // Наука в России. 2008. N $_{2}$ 6. С. 31-35.
- 4. Трансгенные растения для фармакологии / Е.Б. Рукавцова, Я.И. Бурьянов, Н.Я. Шульга, В.А. Быков // Вопросы биологической, медицинской и фармацевтической химии. 2006. № 2. С. 3-12.
- 5. Mason H.S. Expression of hepatitis B surface antigen in transgenic plants / H.S. Mason, D.M. Lam, C.J. Arntzen // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89. P. 11745-11749.
- 6. Oral immunization with hepatitis B surface antigen expressed in transgenic plants / Q. Kong, L. Richter, Y. Yang et al. // PNAS. 2001. Vol. 98. P. 11539-11544.
- 7. Production of hepatitis B surface antigen in transgenic plants / L. J. Richter, Y. Thanavala, C. J. Arntzen, H.S. Mason // Plant Sci. 2002. Vol. 162. P. 833-842.
- 8. Elkholy S. Expression of hepatitis B surface antigen HBsAg gene in transgenic banana / S. Elkholy, A. Bahieldin, A. Sadik // Arab J. Biotech. 2009. Vol. 12. P. 291-302.

НАНОСТРУКТУРИРОВАННЫЕ СИСТЕМЫ НА ОСНОВЕ ПОЛИМЕРКОЛЛОИДНЫХ КОМПЛЕКСОВ НЕИОНОГЕННЫХ ПОЛИМЕРОВ С МИЦЕЛЛАМИ ЗОЛЯ AGI

Р.А. Мустакимов, Ф.Р. Гимаева Научный руководитель: к.х.н., доцент М.В. Базунова

Башкирский государственный университет, г. Уфа

Одним из подходов создания стабильных наноструктурированных систем с регулируемыми размерами является использование способности макромолекул к самосборке путем межмолекулярной ассоциации через нековалентные связи – на примере полимерколлоидных комплексов (ПКК) ХТЗ и его водорастворимого производного - натриевой соли сукцинамида хитозана (СХТЗ), ПВП, ПВС с неорганическими коллоидными частицами ЗОЛЯ лиофобных золей, например, йодида серебра. Коллоидные неорганические частицы лиофобных золей могут выступать в качестве ядра при капсулировании маслорастворимых лекарственных веществ с использованием нано- и микроразмерных контейнеров [1].

ПКК ХТЗ, СХТЗ, ПВП, ПВС с коллоидными частицами йодида серебра получены смешением водных растворов ХТЗ, СХТЗ, ПВП, ПВС со свежеприготовленным золем AgI. Количественные исследования полученных ПКК проводили турбидиметрическим методом.

На рис. 1 (кривая 1) приведена турбидиметрическая кривая смесей водных растворов СХТЗ с золем AgI-1, из которой следует, что при смешении полианиона СХТЗ с положительно заряженными мицеллами золя при любых соотношениях исходных компонентов происходит образование нерастворимых комплексов. Об этом свидетельствует резкий рост оптической плотности. Растворение полимера в золе не происходит.

При добавлении к раствору СХТЗ золя AgI-2 с отрицательно заряженными мицеллами имеет место некоторый рост значений оптической плотности полимерколлоидной дисперсии (рис.1, кривая 2), по всей вероятности, связанный с тем, что значение оптической плотности самого золя D=0,09 лежит выше значения оптической плотности раствора СХТЗ (D=0,03).

При взаимодействии полианиона СХТЗ с мицеллами золя йодида серебра, наряду со специфической адсорбцией, довольно значительный вклад в образование ПКК вносит электростатическое взаимодействие [2].

Турбидиметрические кривые растворов XT3 с золем AgI свидетельствуют о том, что растворение XT3 и в положительно заряженном золе AgI-1, и в отрицательно заряженном золе AgI-2 приводит к образованию ПКД (рис. 2).

Таким образом, в случае поликатиона XT3 образование ПКД имеет место не только при добавлении одноименно, но и противоположно заряженного золя. Наблюдаемое увеличение оптической плотности между одноименно заряженным полимером и золем свидетельствует о наличии между ними взаимодействия.

На рис. 3 приведена турбидиметрическая кривая смесей водных растворов неионогенного полимера ПВП с золем AgI-1, из которой следует, что при смешении ПВП с положительно заряженными мицеллами золя практически при любых соотношениях исходных компонентов происходит образование нерастворимых комплексов. Об этом свидетельствуют большие значения оптической плотности.

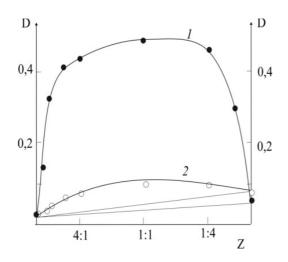


Рис.1. Зависимость оптической плотности водных дисперсий СХТЗ-золь AgI-1 (1) и СХТЗ-золь AgI-2 (2) от объемного соотношения исходных компонентов смеси (Z), длина волны 540 нм, исходная концентрация СХТЗ 0,1 % мас.

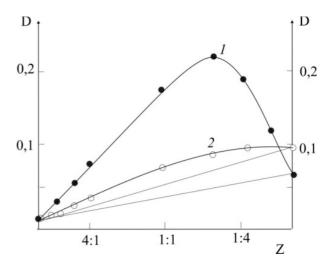


Рис. 2. Зависимость оптической плотности водных дисперсий ХТЗ-золь AgI-1-1 (1) и ХТЗ-золь AgI-2-1 (2) от объемного соотношения компонентов смеси (Z), длина волны 540 нм, исходная концентрация ХТЗ 0,1 % мас.

При смешении ПВП с отрицательно заряженными мицеллами золя также практически при любых соотношениях исходных компонентов происходит образование нерастворимых комплексов. Однако мутность системы возрастает не столь значительно, как в случае ПКД ПВП-золь AgI-1 (рис. 4).

Следовательно, с одной стороны, при взаимодействии полимера и мицелл золя имеет место слабое электростатическое отталкивание, а с другой — стабилизация золя полимером за счёт специфической адсорбции, и, возможно, гидрофобного взаимодействия.

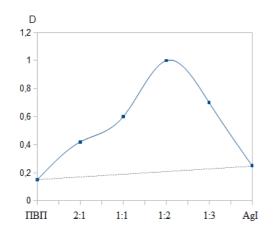
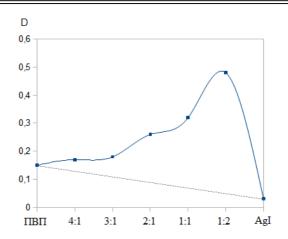



Рис. 3. Зависимость оптической плотности смеси ПВПположительный золь AgI от объемного соотношения 750 нм, исходная концентрация ПВП 1 % мас.

плотности смеси ПВПотрицательный золь AgI от объемного соотношения компонентов смеси (Z), длина волны компонентов смеси (Z), длина волны 750 нм, исходная концентрация ПВП 1 % мас.

Рис. 4. Зависимость оптической

Взаимодействие ПВС с отрицательно и положительно заряженными частицами золя йодида серебра имеет характер, аналогичный взаимодействию ПВП с золем, только необходимо отметить не такое существенное увеличение мутности ПКД в случае ПВС-золь AgI-1, как в случае ПВП-золь AgI-1.

Таким образом, проведено предварительное определение влияния природы полимерного протектора (полиэлектролитов ХТЗ и СХТЗ, неионогенных ПВП и ПВС) на механизм взаимодействия с отрицательно и заряженными мицеллами ЗОЛЯ йодида серебра при положительно получении полимерколлоидных дисперсий в водных средах. Установлено, что в случае полиэлектролитов, наряду со специфической адсорбцией, значительный вклад в образование ПКК вносит электростатическое взаимодействие ионизированных функциональных групп полимера (XT3, СХТЗ) с противоположно заряженными частицами золя йодида серебра. В случае неионогенных полимеров (ПВП, ПВС) стабилизация мицелл золя происходит, в основном, за счёт специфической адсорбции, и, возможно, гидрофобного взаимодействия, и, в случае наличия электронодонорных заместителей в основной цепи полимера происходит слабое электростатическое или донорно-акцепторное взаимодействие полимера с мицеллами AgI-1.

Предложенный подход получения ПКК на основе водорастворимых полимеров и заряженных частиц золя йодида серебра интересен тем, что сочетание уникальных свойств гидрофобных коллоидных неорганических частиц с комплексом свойств гидрофильной полимерной матрицы часто приводит к появлению новых характеристик и свойств материалов [3, 4].

Литература

- 1. Иноземцева О.А. Формировование и физико-химические свойства полиэлектролитных нанокомпозитных микрокапсул / О.А. Иноземцева // Российские нанотехнологии. 2007. Т.2. № 9. С. 68-80.
- 2. Закономерности образования заряженных частиц хлорида серебра и взаимодействие их с полимерами в водных растворах / И.А. Новаков, А.С. Озерин, С.С. Радченко и др. // Известия ВолГТУ. 2013. Т.11. №19 (122). С.113-116.
- 3. Hirai H. Tailored Metal Catalysts / H. Hirai, N. Toshima // Ed. by Iwasawa J. Tokyo: D. Reidel Publ. Co. 1986. P. 87-140.
- 4. Паписов И. М. Матричная полимеризация и другие матричные и псевдоматричные процессы как путь получения композиционных материалов / И. М. Паписов // Высокомолекулярные соединения. 1997. Т.Б39. №3. С. 562-574.

ТЕПЛОВИЗИОННЫЙ МЕТОД ОЦЕНКИ ДОСТОВЕРНОСТИ СООБЩАЕМОЙ ЧЕЛОВЕКОМ ИНФОРМАЦИИ

А.С. Новожилов, А.А. Овасян Научные руководители: д.филол.н, профессор С.А. Сухих, д.ф.-м.н., профессор Н.М. Богатов

Кубанский государственный университет, г. Краснодар

Термография – это метод, основанный на измерении температуры тела, применяемый во многих областях, в том числе в промышленности, строительстве и медицине. При анализе термограмм человека должны факторы, учитываться многие однако главным ИЗ них является сосудистый, который преимущественно и определяет формирование картины конкретных тепловизионных симптомов [1]. Так как сосудистая система управляется симпатической ВНС [2], которая отвечает за в организме, то теоретически активность корреляция между возникшим эмоциональным напряжением и тепловой картинкой отдельных участков тела человека.

В статье [3] авторами была поставлена задача - исследовать эмоциональное состояние человека тепловизионным методом. воздействии видео- и аудиообразами изменялось эмоциональное состояние испытуемых. Образы подбирались так, чтобы вызвать отрицательные и положительные эмоции. В результате было показано, что напряжение функциональных подсистем системы терморегуляции организма проявляется в различных тенденциях зависимости температуры от времени действия эмоциональных нагрузок: уменьшении, возрастании, незначительном изменении.

Авторы статьи [4] исследовали связь сигналов полиграфа, тепловизора электроэнцефалографа. Результатом проведенных исследований являются значения минимальных И максимальных коэффициентов различных сочетаний получаемых сигналов на выходе используемых приборов при ложных ответах испытуемых. Это привело выводу о разработке комплекса полиграф-тепловизор для авторов к повышения точности исследований, или о замене технологии тестирования и использовании информации о колебаниях температуры в значительном количестве точек лица и запястий рук человека, для увеличения достоверности результатов тепловизионного детектора лжи.

Целью данной работы является проведение исследования по тепловизионной детекции обмана.

Для эксперимента была придумана провокационная игра, в ходе которой участники должны были обманывать и при этом испытывать эмоциональное напряжение. С помощью тепловизора снималась термограмма участников в обычном состоянии и после игры. Изменения температуры регистрировались в областях на лице, под которыми находились крупные кровеносные сосуды.

Ниже представлена таблица изменения температуры у респондентов экспериментальной группы.

Анализируя результаты эксперимента по таблице 1, видно:

На поверхности кожи в областях лба, бровей, глазницы - негативные эмоции, сопровождающие линию поведения обмана, могут различным образом влиять на изменение температуры.

В области носа и верхней губы – у всех испытуемых наблюдалось понижение температуры в среднем на 3 и 0,9 °C соответственно.

В области подбородка - тенденция к понижению температуры (ср.знач. -0,6 °C).

В области шеи и щек - повышение температуры (ср.знач. +0,1 °C и +0,2 °C соответственно).

Таблица 1 Изменения температуры у испытуемых экспериментальной группы

	Номер испытуемого и температурные изменения в °С									
Область измерения	1	2	3	4	5	6	7	8		
Нижняя часть лба	0	0,1	0,2	-0,1	0,4	-0,2	0,1	0		
Низ бровей	0,3	0	-0,7	-0,4	0,4	-0,1	-0,4	-0,3		
Глазница	-0,2	0,2	-0,4	-0,6	-0,8	-0,7	-0,4	0,2		
Нос	-1,6	-2,7	-4,2	-3,5	-3,7	-3,4	-1,5	-3,5		
Щеки	0,3	0,4	0,1	0	0,2	-0,6	0,6	0,9		
Верхняя губа	-0,3	-1,3	-1,7	-0,5	-0,2	-1,9	-0,3	-1,1		
Подбородок	0	0	-0,5	-0,3	-0,1	-2,2	-1,2	-0,8		
Шея	0,3	0	-0,1	-0,1	0,5	-0,1	0	0,5		

В качестве контрольного испытуемого выступил участник, которому были известны правила и хитрости эксперимента. Числовые характеристики представлены в следующей таблице.

Из таблицы 2 видно, как изменяется температура следующих областей:

В области лба, бровей, глазницы, верхней губы и подбородка – негативные эмоции, сопровождающие линию поведения обмана, различным образом влияли на изменение температуры у контрольного испытуемого.

В области носа — температура понижается на $1,0\,^{\circ}$ С в первом эксперименте, в промежутке между экспериментами понижается на $0,6\,^{\circ}$ С, потом варьируется в пределах $\pm 0,1\,^{\circ}$ С. Это можно объяснить адаптацией его линии поведения обмана, а также присутствием эмоционального напряжения из-за ответственности в проведении эксперимента.

Таблица 2 Изменения температуры у контрольного испытуемого

Область лица	t, °C	t, °C	t, °C	t, °C	t, °C	t, °C	t, °C
	1	12	2 экс.	23 экс.	3 экс.	34 экс.	4 экс.
	экс.	экс.					
Низ лба	0	0	-0,1	+0,1	+0,1	0	0
Низ бровей	+0,5	+0,3	+0,3	-0,6	+0,1	-0,1	0
Глазница	+0,8	-0,2	-0,1	+0,3	0	+0,3	+0,2
Нос	-1	-0,6	-0,1	-0,2	+0,2	-0,1	-0,2
Щёки	+0,6	-0,4	+0,4	-0,4	+0,4	-0,1	0
Верхняя губа	-0,5	0	+0,8	+0,1	-0,1	-0,5	-0,2
Подбородок	+0,1	-0,2	+0,1	-0,2	0	-0,1	0
Шея	+0,2	-0,3	+0,4	-0,1	0	+0,1	-0,1

В области шеи и щек — в начале эксперимента температура увеличивалась, а в конце варьировалась в пределах $\pm (0,1-0,2)$ °C, что подтверждает малую тенденцию к повышению температуры у экспериментальной группы.

По количественному и качественному анализу термограмм и видеоанализу невербальных характеристик эмоций у испытуемых можно сделать вывод, что тепловизионный метод применим для исследования эмоционального напряжения человека, обусловленного наличием негативных эмоций, сопровождающих линию поведения обмана. Также следует отметить, что наиболее приемлемыми для изучения изменения температуры являются точки на поверхности кожи лица человека в области носа, верхней губы, щек и шеи, ввиду сильного изменения температуры в данных областях у всех испытуемых.

Литература

- 1. Колесов С. Н. Медицинское теплорадиовидение: современный C. Н. Колесов, M. методологический подход / Γ. Воловик, ΦГУ М. А. Прилучный. Нижний Новгород: «ННИИТО Росмедтехнологий», 2008. – 184 с.
- 2. Психофизиология: учебник для вузов. 2-е изд., доп. и перераб. / под ред. Ю. И. Александрова. СПб.: Питер, 2003. 464 с.
- 3. Богатова А.Н. Исследования эмоционального состояния человека тепловизионным методом / А.Н. Богатова, Н.М. Богатов // Новые материалы и технологии: состояние вопроса и перспективы развития: сб. материалов Всерос. молодеж. научной конф., 24-26 июня 2014 г. Саратов: ООО «Издательский Центр «Наука», 2014. С. 67-70.
- 4. Епифанцев Б.Н. О корреляционных связях сигналов полиграфа, тепловизора и электроэнцефалографа / Б.Н. Епифанцев, А.Н. Мекин // Доклады ТУСУРа. 2010. № 1 (21). С. 103-107.

ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ПЕЛЬТЬЕ В КОНСТРУКЦИИ АППАРАТА ДЛЯ ПРОВЕДЕНИЯ ЛЕЧЕБНОЙ ЛОКАЛЬНОЙ ГИПОТЕРМИИ У БОЛЬНЫХ С ПЕРИТОНИТОМ

К.О. Осипов, А.И. Сафронов

Научный руководитель: д.м.н., профессор А.И. Сафронов

Пензенский государственный технологический университет, г. Пенза

Перитонит — это воспаление брюшины, которое является осложнением многих заболеваний органов брюшной полости. Длительное время летальность больных при этом приближалась к 100 %. Открытие антибиотиков снизило этот процент до 30-40. В настоящее время, несмотря

на использование самых эффективных антибиотиков и самых современных методов интенсивной терапии, летальность больных перитонитом держится на уровне 20 %, а тяжелых форм – достигает 50 %. Современные подходы к интенсивной терапии перитонита включают ряд методов, среди которых локальная абдоминальная гипотермия занимает особое место. В отличие от общей гипотермии, которая используется врачами с древних времен, локальные методы охлаждения участков человеческого организма нашли научное обоснование и клиническое применение только к середине XX века.

Развитие позитивных эффектов общей и локальной гипотермии при различных заболеваниях связывают с явлениями обратимого угнетения клеточного метаболизма при понижении температуры. Гипотермия повышает устойчивость органов и тканей к гипоксии и ишемии, уменьшается потребление кислорода и образование его активных форм, ограничиваются высвобождение и взаимодействие сигнальных молекул, замедляются мембранные процессы, уменьшается отек тканей [1, 4].

В 60-80-х годах прошлого столетия отечественный опыт применения общей и локальной гипотермии позволил дать высокую оценку клинической эффективности методики. Воспроизведение гипотермии существенно упростилось после внедрения в клиническую практику аппаратов ДЛЯ проведения гипотермии. Такого рода устройства выпускались только в СССР в 70-х годах прошлого века. В частности, аппараты серии «Гипотерм» обеспечивали развитие локальной и общей гипотермии за счет отведения тепла от поверхности тела пациента с помощью аппликаторов, по которым принудительно циркулировала охлажденная вода [1, 2].

Эффективность лечебной гипотермии была показана при черепномозговой травме, кардиогенном шоке, инсульте и других неотложных состояниях. Тем не менее, уже в середине 80-х годов прошлого века

полностью прекратилось производство отечественного оборудования для гипотермии, существенно уменьшился объём клинического применения методик и научных исследований. В этот же период наблюдался активный рост интереса к проблеме в США и странах Западной Европы [7].

В детальном исследовании В.Г. Василькова [3] обобщен обширный экспериментальный и клинический материал по локальной абдоминальной гипотермии при перитоните. Показано преимущество использования локальных способов гипотермии перед общей гипотермией, в частности, при интенсивной терапии больных после операций по поводу перитонита. Автор, в частности, доказал, что длительное снижение температуры брюшной полости при перитоните приводит к трем очень важным эффектам: снижению всасывательной способности воспаленной брюшины, повышению чувствительности микрофлоры к антибиотикам, снижению потребностей тканей в кислороде.

Конструктивные решения, использованные ранее в отечественных аппаратах, не претерпели существенных изменений в современных импортных устройствах поверхностного охлаждения. Основу их составляют холодильный агрегат для охлаждения хладоносителя и гидравлическая система, обеспечивающая принудительную циркуляцию хладоносителя через криоаппликатор. В большинстве аппаратов в качестве хладоносителя используют воду при температуре +5°C.

Многочисленные попытки отечественных и зарубежных ученых создать техническое средство для обеспечения локального снижения температуры тела у больных с тяжелым течением перитонита не удовлетворяют клиницистов по многим причинам, среди которых главная — неудобство для проведения лечебно-диагностического процесса у этой категории больных, а также дороговизна аппаратуры. Поэтому в отечественной клинической практике до сих пор используется старый, но

крайне необходимый и эффективный способ – аппликация области живота пузырями со льдом в течение длительного времени [5, 6].

Развитие электронной промышленности заставило инженеров обратиться к известному эффекту Пельтье с целью создания охлаждающих электронной В устройств аппаратуре. настоящее термоэлектрический метод охлаждения приборов достаточно широко распространен благодаря ряду преимуществ по сравнению с другими охлаждения (простота управления, возможность методами регулирования температуры, бесшумность работы, высокая надежность, отсутствие движущихся частей). При этом на рынке имеется большое термоэлектрических модулей с различными рабочими количество характеристиками, выпускаемых отечественной промышленностью.

С целью изучения возможности использования термоэлектрических модулей в конструкции аппарата для проведения локальной гипотермии у больных с тяжелыми формами перитонита нами проведен анализ эксплуатации 13 наиболее популярных в интенсивной терапии моделей гипотермических аппаратов (7 – отечественного производства и 6 – иностранного). Ни в одном из них не используется устройство генератора холода, работающего на основе эффекта Пельтье. В этой связи нами предложен вариант конструкции аппарата для проведения локальной гипотермии, который В настоящее время находится на стадии рассмотрения заявки на полезную модель.

Литература

- Краниоцеребральная гипотермия методика защиты мозга в неотложных состояниях / А.В. Бутров, Е.Б. Евдокимов, О.А. Шевелев и др. // Новости анестезиологии и реаниматологии. 2009. № 1. С. 15-18.
- 2. Методические рекомендации по применению аппаратной терапевтической гипотермии у больных в раннем периоде острого

- ишемического инсульта / А.В. Бутров, О.А. Шевелев, Д.В. Чебоксаров и др. М.: Российский университет дружбы народов, 2013. 40 с.
- 3. Васильков В.Г. Интенсивная терапия с использованием локальной гипотермии в неотложной хирургии органов брюшной полости: автореф. дис. ... д-ра мед. наук / В.Г. Васильков. Свердловск, 1977. 34 с.
- 4. Высеканцев И.П. Холодовой стресс и биологические системы / И.П. Высеканцев, Н.Г. Кадникова. Киев: Наукова думка, 1991. 174 с.
- 5. Осипов К.О. Аппарат для проведения локальной абдоминальной гипотермии у больных с перитонитом / К.О. Осипов, Т.А. Ваняшева, М.А. Ганич // Новые материалы и технологии: состояние вопроса и перспективы развития: сб. материалов Всерос. молодеж. науч. конф. 24-26 июня 2014 г. Саратов: ООО «Издательский Центр «Наука», 2014. С. 138-141.
- 6. Аппарат для локальной абдоминальной гипотермии у больных перитонитом / А.И. Сафронов, Т.В. Истомина, В.Г. Васильков, К.О. Осипов // XXI век: Итоги прошлого и проблемы настоящего плюс: периодическое научное издание. Пенза: Изд-во Пенз. гос. технол. ун-та, 2014. №05(21). С. 253-259.
- 7. Шевелёв О.А. Технологии лечебной гипотермии в интенсивной терапии и реаниматологии / О.А. Шевелёв, А.В. Бутров // Неотложная медицина. 2010. №3. С. 45-49.

АКТУАЛЬНЫЙ ВОПРОС СОЗДАНИЯ БИОТЕХНИЧЕСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ ИНДИВИДУАЛЬНЫМ ЗДОРОВЬЕМ ДЕТЕЙ

О.А. Остапенко

Научный руководитель: д.т.н., профессор С.В. Фролов

Тамбовский государственный технический университет, г. Тамбов

Мониторинг детей наиболее здоровья является ОДНИМ ИЗ актуальных направлений в области здравоохранения в настоящий момент. Именно в детском возрасте у человека происходит формирование свойств организма, которые будут определять его здоровье на протяжении последующих периодов жизни. Кроме того, огромное влияние на эти свойства оказывает развитие ребенка в утробе матери. Не случайно одним направлений главных деятельности здравоохранения является обеспечение охраны материнства и детства [1].

Довольно часто приходится наблюдать последствия сложившегося в сознании людей определенного психологического стереотипа понимания медицины исключительно как «медицины болезней». Немалая часть населения отвергает профилактические и диагностические мероприятия до наступления болезни, несмотря на старания врачей, ученых-медиков и деятелей здравоохранения в направлении формирования общественного здоровья и оценки риска донозологических состояний. Недостаточное внимание родителей к своему собственному здоровью, к профилактике заболеваний ребенка с самого раннего возраста (включая внутриутробный период развития), несвоевременное обращение к специалистам ввиду отсутствия личного понимания этой проблемы и живого интереса к ней, -

все это может стать причинами нереализации генетического потенциала развития ребенка.

Тем не менее, сегодня мы можем наблюдать активное вовлечение концепций профилактики в поток медицинских исследований и усилий здравоохранения наряду с бурным развитием мобильной цифровой техники, а также возрастающий интерес взрослого населения фертильного возраста к использованию мобильных приложений в различных сферах жизни. В этой связи актуален вопрос создания системы для оценки состояния здоровья ребенка и выдачи рекомендаций по его улучшению применительно к мобильным платформам. Система должна быть ориентирована на родителя, не обладающего специальными медицинскими знаниями, и в то же время основываться на междисциплинарных научных подходах и методах.

Большой интерес в настоящем исследовании представляют методики оценки показателей использующиеся здоровья, современных информационных системах и продуктах мобильной медицины, и нормативы этих показателей, взятые разработчиками за основу. Как известно, эти нормативы могут варьироваться в весьма широких пределах зависимости от региона, в котором приняты и используются. Необходимо четко определить «зону интереса» - те показатели состояния здоровья беременных и ребенка, которые будут оцениваться в системе. Оценку состояния здоровья ребенка целесообразно проводить следующим группам показателей:

- 1. Физическое развитие (длина тела, масса тела, окружность головы, окружность груди, соответствие развития новорожденного гестационному возрасту, биологическая зрелость ребенка и пр.).
- 2. Нервно-психическое развитие (зрительные и слуховые реакции, эмоции и социальное поведение, речь, сон и пр.).
 - 3. Резистентность (оценка частоты заболеваний).

- 4. Функциональное состояние органов и систем (поведение, рефлексы, частота дыхания, частота пульса, артериальное давление и пр.)
 - 5. Питание (нормы потребления, расчет рациона питания).
- 6. Физическая подготовленность (оценка спортивных показателей) [2, 3].

Центральным блоком системы является мобильное приложение, установленное на устройстве родителя, которое производит экспертную оценку на основе введенных в устройство показателей и содержащихся в базе знаний нормативов и алгоритмов оценки. Кроме того, управление организма осуществляется показателями состояния посредством дальнейшим действиям формирования системой рекомендаций к (посещение специалистов, проведение диагностических мероприятий, общепринятые неспецифические рекомендации по питанию, двигательной активности и пр.).

Организация процесса управления индивидуальным здоровьем матери и ребенка с помощью мобильного приложения должна учитывать не только непосредственную работу пользователя с программным продуктом, но и взаимодействие всех технических и биологических звеньев системы в едином контуре управления. По этой причине настоящее исследование проводится с применением системного подхода.

Поскольку разрабатываемая система представляет собой сложную по структуре совокупность биологических и технических объектов большой размерности, целесообразно понимать ее как биотехническую систему (БТС) целенаправленного действия. Целевая функция БТС - оценка и улучшение показателей состояния индивидуального здоровья матери и ребенка - определяет ее общее построение и средства разработки. С целью определения алгоритмов функционирования технических блоков производится синтез и исследование всей системы методом поэтапного моделирования.

На подготовительном этапе необходимо составить функциональное и морфологическое описание БТС, конкретизировать ее целевую функцию. Также на данном этапе определяются модели биологических звеньев, связывающие их входные и выходные параметры в условиях взаимодействия с техническими звеньями [4, 5].

Второй и третий этапы моделирования посвящены управленческому и информационному согласованию технических и биологических звеньев в рамках общей модели БТС соответственно. Итогом этих этапов исследования БТС является разработка требований к техническим и программным средствам системы.

Заключительный этап — это полунатурные или натурные исследования БТС, апробация разработанных методов и средств, формулировка медико-технических требований к опытным образцам аппаратуры [5].

Таким образом, применение системного подхода и современных программных средств разработки позволит достичь цели улучшения показателей индивидуального здоровья матери и ребенка.

Литература

- 1. Воронцов И.М. Здоровье. Опыт разработки и обоснование применения автоматизированных систем для мониторинга и скринирующей диагностики нарушений здоровья / И.М. Воронцов, В.В. Шаповалов, Ю.М. Шерстюк. СПб.: ООО «ИПК «Коста», 2006. 432 с.
- 2. Участковый педиатр: справ. руководство/ под ред. М.Ф. Рзяникиной, В.Г. Молочного. Ростов н/Д. : Феникс, 2005. 313 с.
- 3. Мазурин А.В., Пропедевтика детских болезней: учебник / А.В. Мазурин, И.М. Воронцов. М.: Медицина, 1985. 432 с.
- 4. Лощилов В.И. Биотехнические системы электростимуляции / В.И. Лощилов, Л.И. Калакутский. М.: МГТУ, 1991. 168 с.

5. Биотехнические системы: теория и проектирование / под ред. В.М. Ахутина.- Л.: Изд-во ЛГУ, 1981. – 220 с.

МОДЕЛИРОВАНИЕ ОПТИЧЕСКИХ МЕТОДОВ ДИАГНОСТИКИ С ПОМОЩЬЮ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ

Д.А. Петров

Научный руководитель: к. ф.-м. н., доцент С.Г. Проскурин

Тамбовский государственный технический университет, г.Тамбов

На сегодняшний день существует множество методик медицинской диагностики, которые основаны на исследовании объекта с помощью излучения. К оптического таким методам относятся оптическая томография, когерентная микроскопия, лазерная анемометрия, диффузионная оптическая томография и т.д. Каждый из этих способов имеет свои достоинства и недостатки, которые связаны с особенностями взаимодействия света с исследуемым объектом, соответственно, для улучшения существующих оптических методов необходимо полное понимание закономерностей, лежащих в основе этого взаимодействия.

Компьютерное моделирование прохождения света через оптически мутные среды, к которым относятся биологические ткани, обычно реализуется с помощью метода Монте-Карло, в котором закономерности рассеяния, поглощения и отражения света выражаются через их плотности вероятности. Данный метод считается наиболее точным, но при этом и наиболее затратным по времени.

Наиболее часто используемый на данный момент программный код, позволяющий проводить Монте-Карло моделирование фотонного транспорта, можно найти в свободном доступе еще с 90-х годов прошлого

столетия [1].Данная программа реализует стационарную модель распространения, при которой значение плотности энергии регистрируется в каждой точке взаимодействия пучка со средой, что не позволяет исследовать объекты, структура которых изменяется BO времени. Биологические ткани имеют, как правило, сложную неоднородную структуру, а данная программа позволяет проводить моделирование только слоистых структур, границы которых линейны. Также программный код выполняется только на одном ядре центрального процессора, что не позволяет использовать технические преимущества современных компьютеров и замедляет и без того довольно медленную методику. обеспечение, Соответственно, программное учитывающее данные особенности реальных биологических объектов, а также позволяющее проводить вычисления с высокой скоростью, сыграет большую роль в развитии современных оптических методов исследования.

Для исследования объектов с неоднородной пространственной структурой предлагается использовать трехмерную матрицу, каждому элементу которой присваиваются свои оптические свойства (коэффициент коэффициент рассеяния, поглощения, показатель преломления И коэффициент анизотропии). Фотон начинает движение в одном сегментов и по мере продвижения в среде переходит из одного сегмента в другой. В случае различия показателей преломления вероятность отразиться от границы среды определяется по формулам Френеля. Точность создания объекта будет определяться размерами сегмента и их общим количеством. Для исследования оптических методик, основанных на диффузионном прохождении света в среде, используются размеры сегмента от 0.0025 см до 0.025 см, что связано с большой глубиной зондирования данных методик. Для методов с небольшой глубиной исследования (микроскопия, оптическая когерентная томография) используются, как правило, размеры сегментов до 0.0005 см. Общее количество сегментов подбирают исходя из размеров объекта, наиболее часто используется объект 300x300x300 или 400x400x400 сегментов — элементов матрицы.

Исследование объектов, изменяющихся во времени, проводится путем задания функции изменения оптических свойств группы сегментов. При этом проводится вычисление времени движения фотона t в среде с помощью формулы:

$$t=\frac{S}{cn^{-1}},$$

где c - скорость света в вакууме, n^{-1} - показатель преломления сегмента, в котором находится фотон, а s - длина свободного пробега фотона между точками взаимодействия со средой.

Длину свободного пробега предлагается выражать только с помощью коэффициента рассеяния $\mu_{\rm s}$:

$$s = -\frac{\ln \xi}{\mu_{s}},$$

где ξ - случайное число, равномерно распределенное от 0 до 1. В классическом виде поглощение энергии пучка рассматривается как случайное событие, и помимо коэффициента рассеяния в знаменателе используется также коэффициент поглощения, что уменьшает длину свободного пробега и увеличивает среднее время проведения моделирования.

Для ускорения моделирования предлагается использовать технологию проведения вычисления на графических процессорах (GPU). GPU выполняет множество одинаковых операций в параллельном режиме. В данном случае каждый поток (нить) будет вычислять распространение своего фотонного пучка. Оптимальное количество потоков определяется исходя из возможностей конкретного видеопроцессора.

Представленная модель позволяет исследовать фотонный транспорт в неоднородных средах в общем виде. Каждая диагностическая методика, основанная на оптических свойствах света, имеет свои технические особенности, которые необходимо учитывать при проведении моделирования. Соответственно, данная модель может использоваться как основа для моделирования различных оптических методов диагностики. Так, например, при моделировании оптической когерентной томографии проводится исследование отраженного излучения, интенсивность которого определяется как:

$$I(z) = I_0 \sum_{i=1}^{N} \sqrt{W} \exp(-(\frac{2z - L_i}{l_c})^2) \cos(\frac{2\pi}{\lambda} (2z - L_i),$$

где W — энергия кванта, 2z и L_i — оптические пути в опорном и объектном плече интерферометра соответственно, а l_c - длина когерентности [2].

Для проверки эффективности представленной модели разработан программный код, позволяющий проводить вычисления с помощью архитектуры параллельных вычислений CUDA. Результат моделирования оптической когерентной томографии (ОКТ) при исследовании верхних слоев кожи представлен на рис. 1, а.

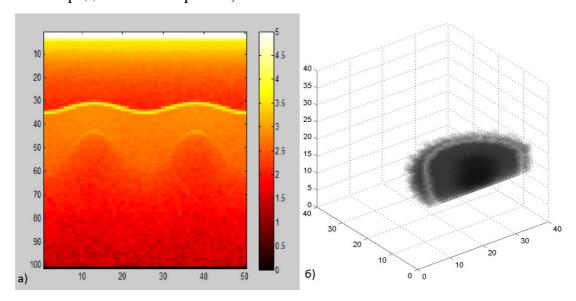


Рис. 1. Структура верхних слоев кожи ОКТ (а) и распространение света в трехмерном слябе на 0, 59 нс (б)

Распределение энергии фотонной плотности во времени в трехмерном объекте (рис. 1, б) может представлять интерес для диффузионной оптической томографии (ДОТ). Задавая детекторы на различных точках границы среды, можно проводить моделирование реального ДОТ исследования.

Скорость проведения моделирования с помощью полученного программного обеспечения в 60-70 раз выше, чем у аналогичного кода, использующего центральный процессор.

Литература

- 1. Wang L.-H. MCML—Monte Carlo modeling of light transport in multi-layered tissues / L.-H. Wang, S.L. Jacques, L.-Q. Zheng // Computer Methods and Programs in Biomedicine. 1995. №47 (2). P. 131-146.
- 2. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach / M. Kirillin, I. Meglinski, V. Kuzmin et al. // Optics Express. 2010. Vol. 18. Iss. 21. P. 21714-21724.

ИССЛЕДОВАНИЕ НАПРЯЖЕНИЯ КИСЛОРОДА В КРОВИ

М.А. Рогозина

Научный руководитель: д. ф.-м.н., профессор М.Ф. Умаров

Вологодский государственный университет, г. Вологда

Всем клеткам живого организма требуется бесперебойная доставка кислорода, где он используется в различных обменных реакциях. Для того чтобы доставить и распределить его по клеткам, нужен довольно мощный транспортный аппарат. Доставка к тканям кислорода осуществляется за

счет гемоглобина. Процесс насыщения гемоглобина кислородом описывается кривой, которая имеет S-образную форму [1].

Гемоглобин максимально может связать четыре молекулы кислорода, так как он имеет только четыре гемма. Все четыре гемма работают согласованно. Когда происходит полное насыщение кислородом, гемоглобин в составе эритроцитов переносит его с током крови к клеткам и тканям организма. Актуальность данного направления определяется тем, что она посвящена одному из важнейших показателей крови – напряжению кислорода в крови, а также малыми сведениями о влиянии различных факторов на данный показатель.

В связи с этим перед нами была поставлена цель, заключающаяся в исследовании зависимости напряжения кислорода в крови от насыщения гемоглобина кислородом при различных факторах: возраста, температуры, степени тяжести заболевания.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) Определить зависимость напряжения кислорода в крови от возраста;
- 2) Определить зависимость напряжения кислорода в крови от температуры;
- 3) Определить зависимость напряжения в крови от степени тяжести заболевания.

Напряжение кислорода в крови в норме колеблется в пределах 95-100 мм рт. ст. С возрастом газовый состав крови претерпевает некоторые изменения [2]. Это наглядно показано на рис. 1.

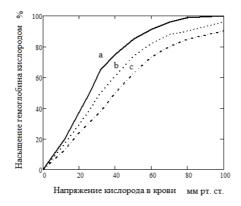


Рис.1. Зависимость напряжения кислорода в крови от возраста: a — молодые люди; b — 40 лет; c — 70 лет

Как видно из рисунка 1, напряжение кислорода в крови молодых людей в среднем составляет 90-100 мм рт. ст.; ближе к 40 годам оно понижается и будет составлять 80 мм рт. ст., а к 70 годам оно и вовсе составляет 70 мм рт. ст. Эти изменения связаны с тем, что с возрастом увеличивается неравномерность функционирования различных участков легких.

Форма кривой диссоциации обусловлена реакционноспособностью гемоглобина, но сродство крови к кислороду также может измениться под действием других факторов, которые приводят к увеличению или уменьшению наклона кривой диссоциации без изменения ее S—образной формы. Такое влияние также оказывают температура тела (рис. 2) и степень тяжести заболеваний (рис. 3).

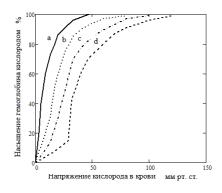


Рис. 2. Зависимость напряжения кислорода в крови от температуры тела:

$$a - 20^{\circ}\text{C}$$
; $b - 30^{\circ}\text{C}$; $c - 37^{\circ}\text{C}$; $d - 42^{\circ}\text{C}$

Как видно из рис. 2, при понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении — снижается. Это связано с тем, что при понижении температуры тела понижается потребление кислорода организмом, что свидетельствует о нарушении дыхательной функции крови и окислительных процессов.

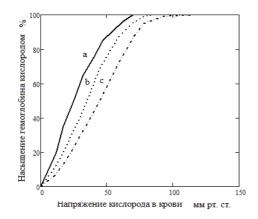


Рис. 3. Зависимость напряжения кислорода в крови от степени тяжести заболевания: a-1-я степень; b-2-я степень; c-3-я степень

Как видно из рис. 3, с ростом степени болезни уменьшается потребление кислорода организмом, это говорит о том, что нарушается газообмен в легких, т.е. в организм не поступает необходимое количество кислорода, и накапливается избыточное количество углекислого газа, что ведет к кислородному голоданию.

Гемоглобин как транспортный белок призван решать две задачи: присоединять кислород в легких и отдавать его тканям. Эти задачи выполняются одним и тем же веществом, поэтому стремление гемоглобина связываться с кислородом должно быть достаточным. Нормальное положение кривой диссоциации оксигемоглобина соответствует оптимальной готовности гемоглобина к реализации обеих задач [3].

Таким образом, нами была изучена зависимость напряжения кислорода в крови от возраста, температуры тела и степени тяжести заболевания. На основе исследования установлено, что с возрастом

увеличивается неравномерность функционирования различных участков легких; с понижением температуры тела понижается потребление кислорода организмом, а также с ростом степени болезни уменьшается потребление кислорода организмом, это говорит о том, что нарушается газообмен в легких.

Литература

- 1. Зачем организму нужен кислород? [Электронный ресурс]. Режим доступа: http://www.activestudy.info/zachem-organizmu-nuzhen-kislorod/
- 2. Кислород крови [Электронный ресурс]. Режим доступа: http://lor.inventech.ru/diagn/diagn0056.shtml
- 3. Кривая диссоциации оксигемоглобина [Электронный ресурс]. Режим доступа: http://med-tutorial.ru/med-books/book/106/page/1- pulsoksimetriya/16-krivaya-dissotsiatsii-oksigemoglobina

ПРИМЕР ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ЗАМКНУТОЙ ГЕМОДИНАМИЧЕСКОЙ СИСТЕМЫ

А.В. Рыгалова

Научный руководитель: к.т.н., доцент М.А. Сидорова

Пензенский государственный технологический университет, г. Пенза

Актуальность вопросов, связанных с заболеваниями сердечно – сосудистой системы, в последние годы не вызывает сомнений, т.к. смертность по данному фактору находится на первом месте в мире по данным ВОЗ [3].


Развитие средств электроники в медицине, а именно приборов и аппаратов, позволяющих адекватно оценивать состояние сердечно — сосудистой системы организма человека, является важным направлением в Российской Федерации. В статье представлены параметры оценки гемодинамики человеческого организма, а также приборы и аппараты, позволяющие проводить диагностику и лечение заболеваний сердечно — сосудистой системы.

Этапы и режимы работы стандартного прибора оценки гемодинамики рассмотрим на примере электрокардиографа. Данный прибор является наиболее распространённым и безопасным скрининговым средством исследования работы сердца. На рисунке 1 представлена схема этапов работы электрокардиографа.

Однако современный электрокардиограф не является единственным прибором оценки параметров гемодинамики. На рисунке 2 представлена примерная систематизация существующих приборов оценки параметров гемодинамики.

Рис.1

Электрокардиограф – прибор, способный зарегистрировать разницу электрических потенциалов между двумя точками в электрическом поле сердца (к примеру, на поверхности тела) во время его возбуждения [2].

Суточное мониторирование ЭКГ, холтеровское мониторирование, или длительная регистрация ЭКГ - метод электрофизиологической инструментальной диагностики, предложенный американским биофизиком Норманом Холтером [1].

Кардиоскоп — это медицинский прибор для наглядного отображения динамики деятельности сердца.

Кардиовизор – прибор оценки состояния миокарда и риска ишемических заболеваний.

Капилляроскоп (от капилляр и греч. σ ко π έ ω — смотрю) — медицинский прибор, разновидность микроскопа для наблюдения за состоянием мельчайших сосудов в организме — капилляров.

Ангиограф — это уникальная рентгеновская система, которая позволяет врачам оперативно распознать изменения, происходящие в сосудах и тканях. Качественное и точное изображение дает детальную картину происходящих процессов.

Представленные приборы работают по заранее разработанным алгоритмам, оценивая состояние замкнутой гемодинамической системы.

Авторами статьи представлен вариант имитационной модели замкнутой гемодинамической системы, которая реализована в программе Matlab (Simulink). Общая гемодинамическая схема (в Simulink) представлена на рисунке 3.

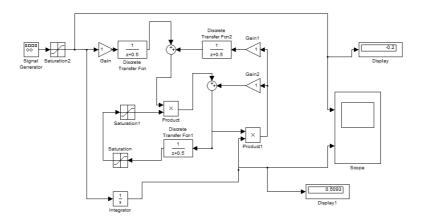


Рис. 3

Параметры гемодинамической системы, которые имеют временную зависимость, представлены на рис. 4 и 5.

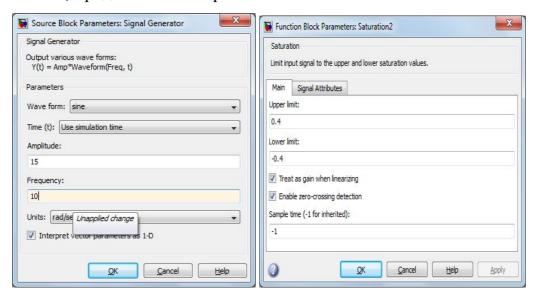


Рис. 4

Временные диаграммы работы замкнутого гемодинамического контура в виде зависимостей скорости кровотока от основных параметров гемодинамики (минутный объем сердца, венозное и артериальное давления) представлены на рис. 6.

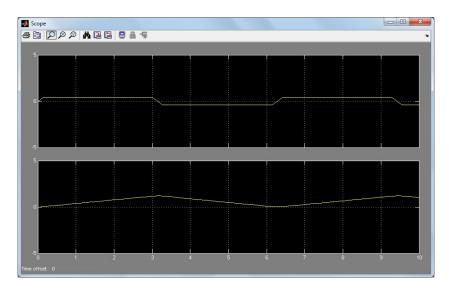


Рис. 6

Указанные фрагменты рабочих областей функционирования замкнутой гемодинамической системы доказывают возможность имитационного моделирования подобных систем оценки работоспособности. Таким образом, результаты представленной работы могут быть использованы в учебном процессе медико – технических специальностей для обучения студентов основам гемодинамики.

Литература

- 1. Суточное мониторирование ЭКГ [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/
- 2. Шумаков В.И. Моделирование физиологических систем организма / В.И. Шумаков, В.Н. Новосельцев. М.: Медицина, 1971. 352 с.
- 3. Информационное агентство России [Электронный ресурс]. Режим доступа: http://tass.ru/obschestvo/1622863
- 4. Ангиографические системы [Электронный ресурс]. Режим доступа: http://medbuy.ru/angiograf

5. Черных И.В. Simulink: Инструмент моделирования динамических систем / И.В. Черных [Электронный ресурс]. — Режим доступа: http://matlab.exponenta.ru/simulink/book1/3.php

СИСТЕМАТИЗАЦИЯ МЕТОДОВ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ КРОВИ НА ОСНОВЕ ЗАКОНА ИДЕАЛЬНОГО КОНЕЧНОГО РЕЗУЛЬТАТА

Ю.Б. Сергеева, О.К. Абуладзе Научный руководитель: д.т.н., профессор Е.И. Глинкин

Тамбовский государственный технический университет, г. Тамбов

Закон идеального результата — один из законов кинематики, позволяющий систематизировать по вектору эффективности (рис.1) развитие технической системы и предопределить конечный результат, который возникнет только в будущем [1].

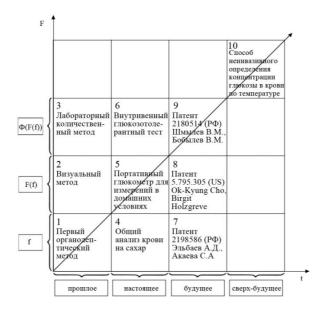


Рис. 1. Матрица ИКР с размещенными на ней методами измерения концентрации глюкозы

Измерение глюкозы принято считать заурядным и примитивным анализом. Действительно, методически этот анализ несложен, но на всех его этапах - от преаналитического до постаналитического - нередко случаются ошибки. Они ведут к неправильному диагнозу и лечению и иногда бывают весьма опасными. Существует множество способов измерения глюкозы, предназначенных для применения в разных условиях и имеющих разные аналитические и клинические характеристики.

- Самый древний метод (около 4 тыс. лет назад) выявления сахарного диабета был описан в Древнем Египте. Ученые выявляли слишком высокое содержание сахара в моче по ее сладкому вкусу (экран 1). Это был первый органолептический метод определения глюкозы.
- В Древнем Китае (более 2 тысяч лет назад) существовал еще один метод *визуальный* (экран 2). Он заключался в выявлении глюкозурии по налету кристаллов глюкозы, остающихся после высыхания мочи.
- Лабораторный количественный метод определения глюкозы в моче (экран 3). Данным методом пользуются чуть более ста лет. Одним из унифицированных методов обнаружения глюкозы в моче является «цветной» или колориметрический метод (метод Альтгаузена). В данном методе используется эффект изменения цвета раствора глюкозы, в том числе мочи с глюкозой, при его нагревании с щёлочью.
- *При общем анализе крови на сахар* кровь (экран 4) берут из пальца (капиллярную) пациента натощак, после чего кровь отсылают в лабораторию. Сам палец прокалывают специальной металлической одноразовой иглой.
- Портативный глюкометр для проведения измерений в домашних условиях (экран 5) прибор для измерения уровня глюкозы в органических жидкостях (кровь, ликвор и т. п.). Достаточно нанести каплю крови на одноразовую индикаторную пластину, установленную

в глюкозоксидазный биосенсор, и через несколько секунд концентрация уровня глюкозы в крови (гликемия) известна.

- *Глюкозотолерантный тест (ГТТ)* (экран 6) лабораторный метод исследования, применяемый В эндокринологии ДЛЯ диагностики нарушения толерантности к глюкозе (предиабет) и сахарного диабета. Суть метода заключается в измерении у пациента уровня глюкозы крови натощак, а затем измерения уровня глюкозы в крови после введения внутривенно глюкозосодержащего раствора. Измерения проводят через каждые полчаса ДЛЯ составления сравнительного графика ПО толерантности к глюкозе.
- Известен способ неинвазивного определения концентрации (экран 7) [2], в котором измеряют систолическое и глюкозы в крови диастолическое артериальное давление натощак и после приема пищи. Рассчитывают содержание глюкозы в крови в ммоль/л натощак (P) и после приема пищи (P1) по формулам: $P=0.37*E^{1.65*K}$, где E - постоянная, E=2,71828, $P1=0,65*E^{1,5*KI}$, где E - постоянная, E=2,71828, K и K1 коэффициенты корреляции, которые определяют как отношение среднеарифметического значения систолического артериального давления среднеарифметическому значению диастолического артериального давления, измеренных на обеих руках пациента натощак (K) и после приема пищи (K1).

Недостаток: способ не позволяет достичь желаемой точности и не позволяет осуществлять непрерывный мониторинг концентрации глюкозы в крови.

– Известен способ для неинвазивного определения глюкозы в частях человеческого тела (экран 8) [3]. Используют высокоточные измерения температуры участка тела, инфракрасного излучения данного участка и теплопроводности кожи на данном участке для определения концентрации глюкозы. Анализ основан на математических методах экстраполяции и не

принимает в расчет воздействия внешних факторов на изменение температуры тела.

Недостатком этого способа является отсутствие математической модели углеводного обмена. Алгоритм связывает только текущую концентрацию глюкозы в крови с текущей температурой, а значит, способ не предназначен для длительного мониторинга, а также не учитывает влияния индивидуальных факторов на изменение температуры.

– Наиболее близким техническим решением по совокупности существенных признаков является способ неинвазивного контроля уровня глюкозы в крови (экран 9) [4]. Это следует из анализа таблицы: вектор развития направлен от первого экрана через пятый и девятый к ИКР – желаемой инновации, поэтому прототипом служит способ неинвазивного контроля уровня глюкозы в крови (экран 9) , а другие технические решения являются аналогами.

Способ неинвазивного контроля уровня глюкозы в крови (экран 9), в котором определяют концентрацию глюкозы в крови с помощью измерительного устройства, при этом проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы тепловых потоков датчиком измерительного устройства, а концентрацию глюкозы (X_g*) определяют по формуле $X_g^* = X_I* + X_2*$, где $X_I* = W_{mn}(s)X_T*$, $X_2* = K_\Pi W_{mn}(s)X_\Pi*$, где X_T* - безразмерное отклонение температуры от установившегося значения.

Недостатками прототипа являются низкая метрологическая эффективность из-за высокой погрешности в широком диапазоне информативных параметров измерения, обусловленной фиксированной статистической градуировочной характеристикой.

Способ неинвазивного определения концентрации глюкозы в крови, основанный на определении концентрации глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме (экран 10).

Идеальным решением является способ неинвазивного определения концентрации глюкозы в крови, поскольку вектор развития проходит от 1-го, через 5-й и 9-й, непосредственно к 10-му экрану.

Литература

- 1. Глинкин Е.И. Техника творчества / Е.И. Глинкин. Тамбов: ТГТУ, $2010.-165~\mathrm{c}.$
- 2. Пат. 2198586 РФ по кл. А61В 5/022. Способ неинвазивного определения концентрации глюкозы в крови / А.Д. Эльбаев, С.А. Акаева, Х.А. Курданов // Открытия, изобрет. 2003.
- 3. Пат. 5.795.305 US по кл. 60/549. Process and device for non-invasive determination of glucose concentration in parts of the human body / Ok-Kyung Cho, Birgit Holzgreve, 1998.
- 4. Пат. 2180514 РФ по кл. А61В 5/01. Способ и устройство неинвазивного контроля уровня глюкозы в крови / В.М. Шмылев, В.М. Бобылев // Открытия, изобрет. 2002.

ПРОБИОТИЧЕСКИЕ МИКРООРГАНИЗМЫ С ИММУНОМОДУЛИРУЮЩИМИ СВОЙСТВАМИ – ОСНОВА ПРЕПАРАТОВ ИММУНОБИОТИКОВ

С.А. Старовойтова

Научный руководитель: д.б.н., профессор А.В. Карпов

Национальный университет пищевых технологий, г. Киев

Исследования последних лет о составе и функциях нормальной микрофлоры кишечника человека вызвали новую волну интереса к целевому применению и разработке бактериотерапевтических препаратов

для профилактики и лечения соматических заболеваний. Доказано, что нарушения микробиоты связаны с развитием заболеваний воспалительной этиологии, ассоциированные с расстройством коммуникации между клетками иммунной системы и микроорганизмами. Восстановление микробиоты способствует нарушенного состава установлению сбалансированной иммунорегуляции и, как следствие, торможению воспалительной реакции иммунной системы. Эффективным фактором восстановления нарушений микробиоты применение является бактериотерапевтических препаратов пробиотических на основе микроорганизмов, ИΧ структурных компонентов И метаболитов (пробиотики, т.д.). парапробиотики, синбиотики, симбиотики И Производство пробиотиков позиционируется, как высокоэффективная с точки зрения соотношения стоимость-эффект-безопасность биотехнология, которой принадлежит будущее В предотвращении терапии воспалительных заболеваний в желудочно-кишечном тракте (ЖКТ) и за его пределами [1]. Однако, несмотря на то, что применение пробиотиков введено в профилактические и терапевтические схемы для профилактики и заболеваний (некротизирующего лечения многих энтероколита, антибиотикоассоциированной диареи, воспалительных заболеваний кишечника, урогенитальных инфекций, аллергической патологии и т.д.), потенциал этих препаратов реализован лишь частично. Причинами этого является многофакторность влияния пробиотиков на физиологические и патологические процессы в организме, а также отсутствие надежных критериев выбора препарата для конкретной патологии. В настоящее время описано несколько подходов к повышению эффективности действия бактериотерапевтических препаратов: селекция наиболее эффективных штаммов, комбинация нескольких штаммов, сочетание пробиотических микроорганизмов \mathbf{c} пробиотическими субстанциями, генетическая модификация пробиотических микроорганизмов и т.д. [2, 3]. Однако

одному пробиотическому микроорганизму, как правило, свойственны многочисленные биологические эффекты. Вопрос о том, какие именно свойства пробиотических микроорганизмов должны быть положены в основу выбора для профилактики или лечения данной конкретной патологии, остается открытым. Важным механизмом действия пробиотических препаратов является моделирование функций иммунной системы, как на местном, так и на системном уровне. Заболевания, ассоциированные с нарушением микробиоты, всегда сопровождаются расстройствами иммунологической реактивности различного характера и степени тяжести. Учитывая это, иммуномодулирующую активность пробиотиков можно рассматривать как информативный критерий для целевого применения этих лекарственных средств.

Биологические эффекты пробиотических микроорганизмов являются штаммоспецифическими. В зависимости от типа, вида и даже штамма пробиотических бактерий они могут оказывать иммуностимулирующую, (биполярную) иммунодевиаторную И иммунорегуляторную активность. Например, супрессивную молочно-кислые бактерии характеризуются широким спектром иммуномодулирующей активности, направленность которой варьирует в пределах не только одного рода, но и вида. Вид Lactobacillus rhamnosus является характерным компонентом пробиотических препаратов. Все представители этого вида имеют в составе генома неметилированные СрG-последовательности, которые активируют TLR9 на эпителиоцитах и клетках иммунной системы, следствием чего является стимуляция секреции противовоспалительных медиаторов. Состав CG-нуклеотидов у бактерий различных штаммов неодинаков, что определяет их различия в способности активировать противовоспалительный метаболизм эпителиоцитов И иммуноцитов кишечника. Бактериям этого вида присуща как провоспалительная, так и противовоспалительная и иммуномодулирующая активность.

Применение пробиотического микроорганизма самостоятельно и в сочетании с другими может иметь различные последствия для иммунологической реактивности. Так, *L. casei* Shirota и *Saccharomyces boulardii* относятся к мультифункциональным иммунобиотикам с широким спектром разнонаправленного иммуномодулирующего действия.

Иммуномодуляторное действие некоторых пробиотических микроорганизмов имеет более однонаправленный характер. Это касается, например, многочисленных штаммов *Bifidobacterium infantis* [3, 4].

Направленность и выраженность иммуномодулирующего действия пробиотических бактерий зависят от исходного функционального состояния клеток иммунной системы. Один и тот же пробиотик может активировать миграцию функционально нейтральных клеток и подавлять движение эффекторов, поляризованных к тому или иному фенотипу, усиливать пролиферацию тканевых резидентных лейкоцитов и тормозить индуцированную пролиферацию циркулирующих клеток иммунной системы разных популяций [1-4].

Важное значение для реализации иммуномодулирующего эффекта пробиотиков имеют генетические факторы. Не менее важным для назначения и выбора пробиотиков является учет генетически детерминированной склонности к определенным заболеваниям.

Таким образом, стратегия эффективного применения иммуномодулирующей активности пробиотиков содержит три составляющих: 1) знание состава и функций микрофлоры различных компартментов с учетом энтеротипа, возрастных и индивидуальных особенностей метабола микробиоты, причин и характера дисбиоза; 2) оценка состояния системной И локальной иммунологической реактивности, иммунопатогенетических составляющих патологического процесса; 3) детальный анализ и учет всех свойств и механизмов действия пробиотического (их) микроорганизма (-ов), в частности характера и

направленности иммуномодулирующего действия. Комплексная оценка всех составляющих позволяет определить характер необходимой иммуномодуляции, состав пробиотического препарата, режим и дозы его применения, а также реализовать потенциал пробиотиков целенаправленно, достигнув максимальной эффективности применения этих лекарственных средств [2-5].

Литература

- 1. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis / S. King, J. Glanville, M.E. Sanders et al. // Br. J. Nutr. -2014. Vol. 112, No. 1. P. 41-54.
- 2. Starovoitova S.A. Technological aspects of probiotics obtaining / S.A. Starovoitova, O.I. Skrotska // Science and Education a New Dimension. Natural and Technical Sciences. 2014. Vol. II (3), Iss. 21. P. 29 33.
- 3. Study of biological properties of lacto- and bifidobacteria in vitro / S. Starovoitova, L. Lazarenko, L. Shynkarenko, N. Spivak // Abstracts of XXXII International Congress of the Society for Microbial Ecology and Disease (October 29-30, 2009, St. Petersburg, Russia). Научно-практический журнал «Гастроэнтерология Санкт-Петербурга».-2009.-№4.-С. А26.
- 4. Імунодолуюючі властивості бактерій роду Lactobacillus / С.О. Старовойтова, Н.О. Тимошок, В.Ю. Горчаков, М.Я. Співак // Мікробіологічний журнал. 2009. Т.71, №3. С. 41-47.
- 5. Старовойтова С.А. Пробиотики на основе трансгенных микроорганизмов / С.А. Старовойтова, О.И. Скроцкая // Biotechnologia Acta. 2013. Т. 6, №1. С. 34-45.

НЕОДНОЗНАЧНОЕ ВОСПРИЯТИЕ СОСТОЯНИЯ ВНУТРЕННИХ ОРГАНОВ ПРИ УЛЬТРАЗВУКОВОЙ ДИАГНОСТИКЕ ТУЧНЫХ ПАЦИЕНТОВ

Е.В. Стрыгина

Научный руководитель: к.т.н., доцент А.Ю. Куликов

Тамбовский государственный технический университет, г. Тамбов

Из практики обследования пациентов методами ультразвуковой диагностики выявлен факт неоднозначного восприятия состояния внутренних органов из-за помех и разного рода артефактов — аппаратурных и физических.

Аппаратурные артефакты возникают вследствие технических причин, в том числе из-за несовершенства приборов ультразвуковой диагностики [1]. К ним, в частности, относятся следующие: артефакт ложного отсутствия потока [2], артефакт широкого луча, или краевой артефакт [1], артефакт смешивания [3].

Физические артефакты связаны с взаимодействием ультразвукового луча с биологической тканью и возникают вследствие физических свойств ультразвукового луча: при прохождении через биологические ткани наблюдается уменьшение амплитуды и интенсивности ультразвукового сигнала, что называется затуханием. Основными причинами затухания являются отражение, рассеяние и поглощение ультразвуковых волн на неоднородностях и в плотных структурах, характеризующихся повышенной эхогенностью. К таким структурам относятся конкременты, костная ткань, пузырьки воздуха, а также плотные соединительнотканные образования, в том числе неоднородная жировая ткань.

В толстой подкожной неоднородной жировой ткани пациента происходит наибольшее поглощение сигнала. Она часто дает позади себя акустическую тень - область с низким уровнем отраженных сигналов, что обусловлено малым уровнем энергии, прошедшей через данную структуру ультразвуковой волны [4].

Акустическая тень имеет вид анэхогенной полоски, появляющейся после высокоамплитудного эхосигнала. Так, на рис. 1 представлена акустическая тень, создаваемая желчным камнем, являющимся сильным акустическим отражателем (желчный камень (G) создает акустическую тень (S) из-за отражения и поглощения ультразвуковой волны. Т – передатчик). На рис. 2 показана типичная акустическая тень (S), создаваемая желчным камнем.

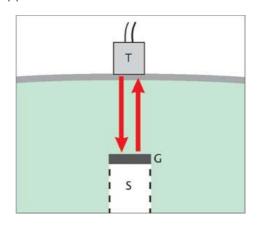


Рис. 1. Акустическая тень

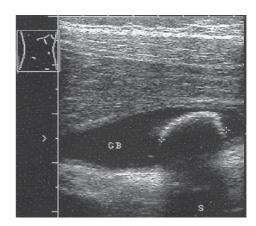


Рис. 2. Акустическая тень

Неоднозначно воспринимаются эхограммы с очагами повышенной эхогенности. Достаточно сложно дифференцировать липому с контрастной жировой долькой, фиброаденолипомой или жировыми включениями, поскольку зрелые липомы состоят из жировой ткани и представляют собой скопления жировых клеток, и на УЗИ, соответственно, напоминают жировую ткань.

У тучных людей в 65 % случаев развивается жировая инфильтрация (жировой гепатоз) печени. Она вызывает диффузное увеличение

эхогенности паренхимы печени. Причинами ее служат избыточное гепатит, питание, злоупотребление алкоголем, сахарный диабет, нарушение жирового обмена. Жировая инфильтрация печени характеризуется повышением эхогенности по отношению к паренхиме почки (рис. 3) и ослаблением прохождения луча до периферии паренхимы Кроме того, иногда наблюдаются закругление нижнего края печени (рис. 5) и сужение просвета печеночных вен (рис. 6). Отражение звука, вызванное выраженной жировой инфильтрацией, приводит к акустическому ослаблению, которое нарастает в печени пропорционально расстоянию от датчика. В результате сниженная эхогенность печени создает труднооцениваемую картину [5].

Рис. 3. Жировая инфильтрация печени



Рис. 4. Жировая инфильтрация печени

Рис. 5. Жировая инфильтрация печени

Рис. 6. Жировая инфильтрация печени

Наличие артефактов, в частности тех, которые дает неоднородная жировая прослойка, приводит к некорректной интерпретации

изображений, к трудностям в постановке верного диагноза. Это вызывает необходимость разработки новых, более совершенных методов обработки ультразвуковых сигналов, исключающих данные недостатки.

Литература

- 1. Демидов В.Н. Ультразвуковая диагностика в гинекологии / В.Н. Демидов, Б.И. Зыкин. М.: Медицина, 1990. 224 с.
- 2. Артефакты в ультразвуковой диагностике / А.Ю. Васильев, А.И. Громов, Е.Б. Ольхова и др. М.: ФГОУ «ВУНМЦ Росздрава», 2006. 56 с.
- 3. Куликов В.П. Цветное дуплексное сканирование в диагностике сосудистых заболеваний / В.П. Куликов. Новосибирск: СО РАМН, 1997. 204 с.
- 4. Физические основы использования ультразвука в медицине : учеб. пособие / И.И. Резников, В.Н.Федорова, Е.В. Фаустов и др. М.: РНИМУ им. Н.И. Пирогова, 2015. 97 с.
- 5. Блок Б. УЗИ внутренних органов / Б. Блок ; под ред. А.В. Зубарева М.: МЕДпресс-информ, 2011. 256 с.

ПОЛУЧЕНИЕ МАГНИТНОЙ ЖИДКОСТИ И ЕЕ ПРИМЕНЕНИЕ В МЕДИЦИНЕ

А.Д. Сытченко

Научный руководитель: к.т.н., доцент Е.К. Агеева

Юго-Западный государственный университет, г. Курск

Магнитная жидкость (МЖ) находит широкое применение во многих сферах медицины и биологии. Например, МЖ применяется для заживления язв и стойких свищей. Метод заключается во введении

в свищевой канал магнитной жидкости и наложении на область наружного свищевого отверстия постоянного магнита. Фиксированное положение магнитной жидкости в свищевом канале надежно герметизирует свищ, не мешая процессам заживления.

Магнитная жидкость выступает в качестве «курьера» - магнитные частицы, прикрепленные к биомолекулам, частицам лекарства, или диагностического агента. Молекулами, прикрепленными к магнитным курьерам, легко можно манипулировать с помощью внешнего магнитного поля. Это касается как процесса доведения лекарства до определенного органа человека, так и удержания его в этом органе. Магнитные наночастицы разрушают раковые клетки. Многофункциональные наночастицы под воздействием магнитного поля могут проникать в раковые клетки, проделывая дыры в их мембранах.

В настоящее время ученые работают над методом «магнитожидкостная гипертермия». Этот метод предназначен, прежде всего, для терапии одной из наиболее злокачественных форм опухоли головного мозга — глиобластомы [1].

Мы получаем магнитные жидкости на основе железных электроэрозионных порошков (ЖЭЭП) из отходов различных сталей. Для этого нам понадобятся:

- Металлопорошок, полученный из отходов быстрорежущей стали;
- Полиметилсилоксановая жидкость;
- Олеиновая кислота.

На первом этапе получают металлопорошок на установке для электроэрозионного диспергирования (ЭЭД) (рис.1), в качестве рабочей жидкости используют керосин.

Процесс ЭЭД (рис. 1) представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами. В зоне

разряда под действием высоких температур происходит нагрев, расплавление и частичное испарение материала [2].

Мы загружали в реактор, заполненный рабочей жидкостью, сломанные сверла из стали инструментальной быстрорежущей марки P6M5 (ГОСТ 19265-73).

Рис. 1. Общий вид установки для ЭЭД

Процесс проводили при следующих электрических параметрах: емкость разрядных конденсаторов 45,5 мкФ, напряжение 100 ... 120 В, частота следования импульсов 160 Гц. В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала отходов сверл c образованием дисперсных порошка. Полученный порошок необходимо частиц перетереть в фарфоровой ступке до однородного состава [3].

В итоге мы получаем порошок, основной составляющей которого является смесь оксидов трехвалентного и двухвалентного железа [4]. Форма частиц порошка показана на рис. 2.

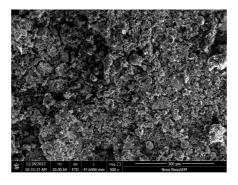


Рис. 2. Снимок с РЭМ частиц порошка, полученного ЭЭД (увеличение 500)

Следующим этапом является взвешивание на аналитических весах необходимых количеств реагентов: олеиновой кислоты, полученного порошка и ПМС (рис. 3).

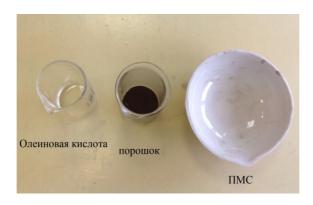


Рис. 3. Необходимые реагенты

Далее смешивают все реагенты в фарфоровой чашке. Полученную смесь подогревают на электроплитке в вытяжном шкафу. На последнем этапе полученную магнитную жидкость на основе ЖЭЭП охлаждают до комнатной температуры и переливают в ёмкость для хранения и последующего использования.

Мы получили магнитную жидкость на основе железных электроэрозионных порошков. Она обладает всеми свойствами аналогов, но такой способ получения имеет ряд преимуществ:

- экологичность производства;
- мимимальная энергозатратность;
- экономичность.

Мы планируем использовать полученную МЖ в медицине, в частности для лечения и профилактики различных болезней.

Литература

1. Электронный ресурс. – Режим доступа: http://www.ferrolabs.com/ru/information/33/

- 2. Патент РФ № 2364482 МПК В23К 35/32, С23С 4/04. Установка для получения нанодисперсных порошков из токопроводящих материалов. Российская Федерация, заявитель и потентообладатель Курск.гос. техн. унт. № 2006128665/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. № 12.
- 3. Быстрорежущая сталь, диспергированная в керосине / Е.В. Агеева, Е.В. Агеев, Е.А. Воробьев, М.А. Зубарев // Известия ЮЗГУ. 2014. № 5 (56). С. 21-26.
- 4. Агеева Е.В. Рентгеноспектральный микроанализ порошка, полученного из отходов быстрорежущей стали электроэрозионным диспергированием в керосине / Е.В. Агеева, Е.В. Агеев, Е.А. Воробьев // Вестник машиностроения. − 2014. − № 11.− С. 71−73.

ПОВЫШЕНИЕ НАДЕЖНОСТИ И РЕСУРСА ИСКУССТВЕННОГО СЕРДЦА CARMAT

Л. Калем, Е.Ю. Торопылина Научный руководитель: профессор Г.П. Фетисов

Московский авиационный институт (национальный исследовательский университет), г. Москва

В своем развитии медицина всегда опиралась на достижения в научно-технической области. И с каждым годом этот процесс сотрудничества, образно говоря, медицины и техники становится более активным и плодотворным. Восстановление утерянных или ослабленных функций организма человека решается не только чисто терапевтическими методами. Уже никого особенно не удивляют оперативные замены отдельных органов (сердце, легкие, печень и т.д.) на донорские. Однако такие решения далеко не всегда приемлемы из-за дефицитности

донорского материала, высокой сложности. Работы биотехнологов по выращиванию отдельных органов на базе стволовых клеток, нанотехнологий блестяще решают проблему биосовместимости, но пока опыты в этой области далеки от завершения. А это значит, что замена отдельных органов, сосудов, костных тканей искусственными материалами еще долгое время будет вне конкуренции, как с точки зрения доступности материала, так и стоимости.

В данной статье рассматриваются состояние и перспективы разработки искусственного сердца (ИС). Качественное решение проблемы ИС позволило бы отказаться от донорского, а значит, решить проблему дефицита материала и высокой стоимости. Однако, решение подобной задачи предельно сложна, даже с чисто технической стороны: большой размер, расположение насосной системы вне человека, обеспечение обратной связи «сердце-нагрузка», проблемы с электропитанием. Российские эксперименты по созданию искусственного сердца (с участием МАИ) пока обеспечивают (у животных) только несколько месяцев жизни.

Первая имплантация ИС, рассчитанного на длительный срок эксплуатации, была проведена 2 декабря 1982 года в Медицинском центре Ютского университета (США). Пациенту имплантировали аппарат Jarvik 7, который состоит из:

- 1) двух пневматических желудочков;
- 2) манжеты из волокна Дакрона с искусственными механическими капканами из полиуретана;
 - 3) системного блока.

Жизнь таких пациентов была малоприятной. Работа механизма вызывала конвульсии, затрудненное дыхание, нарушение работы внутренних органов, помутнение сознания. Больные были буквально прикованы к внешнему блоку питания. Чтобы соединить этот блок с

имплантированным в грудь насосом, приходилось проделывать отверстие в теле пациентов, что повышало риск занесения инфекции.

Bместо Jarvik 7 появился его аналог, но в более усовершенствованном варианте Cardiowest.

Cardiowest представляет из себя искусственные желудочки, изготовленные из полиуретана. Для его установки хирург отсекает нижнюю половину сердца и подключает протез к обоим предсердиям. Cardiowest приводится в действие сжатым воздухом, который нагнетается с помощью компрессора.

В 2001 году у пациентов появилась возможность покинуть больницу и продолжить более или менее нормальный образ жизни. Компрессор весил 15 кг, его можно было переносить в рюкзаке. Но Cardiowest все так же соединяется с помощью трубочек, что сохраняет риск инфекции.

Несмотря на все преимущества Cardiowest все равно является лишь временным решением и не уменьшает количество нуждающихся в пересадке сердца.

Следует заметить, что доступность к материалам по созданию ИС задачу получения полной довольно непростая, если еще ставить объективной информации. В итоге нам необходимо было подготовить научно-методический материал кафедры (лекционный, ДЛЯ семинарских занятий), соответствующие презентации. Кроме того, не имея возможности в реальных условиях взаимодействовать конкретно с фирмами по созданию ИС, мы должны были в виртуальном режиме усовершенствования ПО pecypcy И надежности ИС. предложить применительно к наиболее отработанному зарубежному аналогу. Таким, наиболее оптимальным вариантом ИС, нами было принято разработанное во Франции ИС компании Cormat под руководством профессора Алена Карпанье.

Французское ИС рассчитано на эффективную и бесперебойную работу на протяжении 5 лет.

Устройство состоит из двух частей — имплантируемой и внешней. Имеет два желудочка — левый и правый. Один из них предназначен для крови, другой - для специальной жидкости. Работу протеза регулируют встроенный микропроцессор и система датчиков высоты и давления, которые отслеживают параметры кровотока в сердце. Снаружи на теле пациента будет закреплена система для записи и передачи данных о работе сердца. В домашних условиях предлагается наличие внешнего блока питания, сейчас это литиевые аккумуляторы.

На наш взгляд, одной из причин, ограничивающих ресурс ИС, является износ подшипниковых пар в его двигателе. Для снижения износа подшипников нами рекомендованы разработанные на кафедре покрытие и технология его нанесения. Само покрытие исследовалось по многим параметрам, в том числе на износ и биосовместимость. Последняя оценивалась на экспериментах с животными в Институте Скорой помощи Склифосовского. Нанесенное ионно-плазменным методом покрытие ZnCxOy (оксикарбида циркония) повышает биосовместимость титана в 3 раза при увеличении износостойкости [1]. Поэтому мы предлагаем нанести на подшипники микродвигателя данное покрытие, которое должно увеличить их ресурс на 1,5-2 года.

Французский проект Carmat предполагает наличие наружных аккумуляторов (2 аккумулятора), каждый на работу до 3 часов.

Для обеспечения более комфортной, практичной и безопасной жизни пациентов, предлагаем разработать специальную одежду (куртка, головной убор), снабженную солнечными батареями.

Самые распространенные полупроводниковые материалы, использованные для изготовления панели солнечных батарей на основе:

кремния, пиллурида, соединения медь-индий (галлий)-селен, а также концентраторные батареи на основе арсения галлия.

Для ИС Carmat необходимо выбирать самую надежную модель, поэтому выбор будет именно за многослойными панелями из полупроводников.

Естественно, что подача электроэнергии к микродвигателю через провода в отверстие грудной полости должна быть отвергнута в пользу беспроводной передачи энергии внешним магнитным полем.

Выводы

- 1. На основании обширного литературного материала, его анализа, подготовлен учебно-методический материал по разработкам искусственного сердца.
- 2. Сформулировано предложение по повышению ресурса микродвигателя.
- 3. Разработаны рекомендации по повышению безопасности за счет подзарядки аккумуляторов от солнечных батарей.

Литература

1. Фетисов Г.П. Ионно-плазменные нестехиометрические покрытия на основе нитридов и карбидов переходных металлов / Г.П. Фетисов, М.Г. Карпман, Р.Х. Сайдахмедов. – М.: Изд-во МАИ, 2011. – 220 с.

ЭЛЕКТРОСТИМУЛЯЦИОННЫЙ МИКРОТРЕНАЖЕР ДЛЯ ДЕТЕЙ С ДЦП

Н.А. Уварова

Научный руководитель: к.т.н., доцент А.В. Прохорцов

Тульский государственный университет, г. Тула

В настоящее время вопрос о реабилитации детей с детским церебральным параличом (ДЦП) является актуальным. За последнее время увеличилось количество детей с этой патологией, которая приводит к инвалидности, социальной дезадаптации и существенному ухудшению качества жизни. В структуре детской инвалидности в России поражения нервной системы у детей составляют 60 %, из них ДЦП - 24 %.

Большую часть детей с нарушениями опорно-двигательного аппарата составляют дети с церебральными параличами. Степень тяжести двигательных нарушений находится в большом диапазоне, где на одном полюсе находятся грубейшие двигательные нарушения, на другом минимальные. У детей с церебральным параличом имеются разнообразные двигательные нарушения: нарушение равновесий И координации движений, наличие насильственных движений, синкинезии, кинестезий, развитие установочных недостаточное цепных выпрямительных рефлексов, наличие патологических тонических рефлексов, ограничение или невозможность произвольных движений, нарушение мышечного тонуса. Различают повышенный и пониженный мышечный тонус. При ДЦП важным элементом является точная диагностика. Для нормализации мышечного тонуса применяются массаж, ЛФК либо электростимуляция.

Известны разработки научно-медицинской фирмы МБН: «МБН-Биомеханика», которая определяет биомеханические характеристики пациента, и «МБН-Нейромиограф» - определяет мышечный тонус и нервную проводимость. Первая система представляет собой комплекс для клинического анализа движений, позволяющий проводить функциональную диагностику двигательной патологии, контроль восстановительного лечения и проведение активной реабилитации на основе биологической обратной связи [1, 3]. В «МБН-Биомеханика» для отведения конечностей используются контроля угла компактные гироскопические датчики. «МБН-Биомеханика» применяется в таких областях как: неврология, ортопедия – травматология, протезирование, ЛФК, физиотерапия и других смежных специальностях. Данный комплекс включает в себя пять методов исследования: подометрию (отслеживание временных характеристик шага), гониометрию (отслеживание кинематических характеристик движений в суставах), динамометрию (регистрация реакций опоры), электромиографию (ЭМГ), стабилометрию (регистрация положения и движений общего центра давления на плоскость опоры при стоянии).

В работе Л.И. Калакутского по электростимуляции [4] он разделяет по функциональному признаку методы электростимуляции, применяемые в клинической медицине, в соответствии с областью их использования (рис. 1).

В предлагаемом микротренажере используется электростимуляция опорно-двигательного аппарата. Применение электростимуляции при ДЦП требует особого подхода, поскольку нужна не просто тренировка силы мышц, но координация этого процесса с расширением объема и амплитуды движений пациента. Тренировочный цикл должен учитывать динамику достигнутых показателей и не форсировать нагрузку. В микротренажере для контроля угла отведения конечностей используются компактные гироскопические датчики.

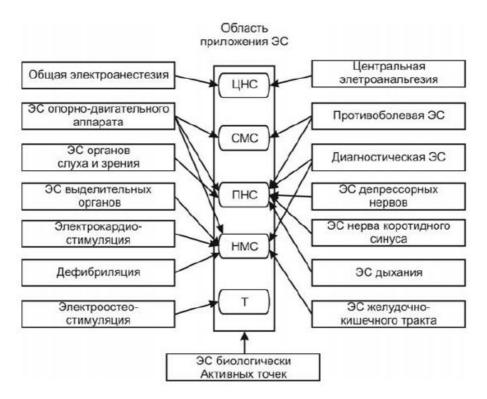


Рис. 1. Методы электростимуляции:

ЭС-электростимуляция; ЦНС- центральная нервная система; СМС- спинно-мозговые структуры; ПНС- периферическая нервная система; НМС- нейромышечная система; Т- ткани

Предлагается использовать *гироскопический датичи*, аналогичный применяемому в «МБН-Биомеханика», в микротренажере для детей с ДЦП с целью управления моментом подачи стимуляционных импульсов.

В соответствии с рекомендациями Л.И. Калакутского для работы с детьми с ДЦП подходит следующая структура (рис. 2). В микротренажере (рис.1) применяется электрический стимул, поступающий через пару накожных электродов, расположенных на мышечных волокнах или в двигательных точках. В момент наступления ослабления двигательных функций электростимуляция позволяет временно поддержать функциональное состояние мышц и соответственно увеличить амплитуду отведения конечности.

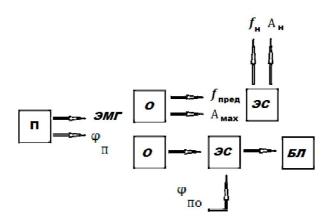


Рис. 2. Структурная схема электростимуляционного микротренажера: Π – пациент; Θ – элемент сравнения; Θ – обработка; Θ – блок логики; φ_{Π} – показания гироскопа, снимаемые с пациента; $f_{\Pi p e g}$ – предельная частота спектра; $A_{\text{маж}}$ - максимальная амплитуда; $f_{\text{н}}$ – нормальная частота спектра; $A_{\text{н}}$ – нормальная амплитуда спектра; $\phi_{\Pi 0}$ - уровень, достигнутый на прошлом занятии

Контроль осуществляется с помощью электромиографии (ЭМГ), которая позволяет оценить наступление усталости пациента по снижению амплитуды и изменению спектра сигнала. Элемент сравнения (ЭС) сравнивает угол отведения конечности в момент тренировки с ранее записанными данными, что позволяет обеспечить постепенное увеличение возможностей пациента.

Предлагаемый электростимуляционный микротренажер, основанный на гироскопическом измерителе и оценке мышечной активности с помощью ЭМГ, предоставляет широкие возможности для реабилитации детей с ДЦП и может быть широко востребован в диагностических центрах.

Литература

1. Лощилов В. И. Биотехнические системы электронейростимуляции / В. И. Лощилов, Л. И. Калакутский. - М.: Изд-во МГТУ им. Н. Баумана, 1991. – 196 с.

- 2. Утямышев Р.И. Электронная аппаратура для стимуляции органов и тканей / под ред. Р.И. Утямышева, М.А. Враны. М. : Энерго-атомиздат, 1983. 384 с.
- 3. Приходько О.Г. Ранняя помощь детям с церебральным параличом в системе комплексной реабилитации/ О.Г. Приходько. СПб.: Изд-во РГПУ им. А.И.Герцена, 2008. 208 с.
- 4. Калакутский Л. И. Системы электростимуляции органов и тканей [Электронный ресурс] : электрон. учеб. пособие / Л. И. Калакутский, С. А. Акулов, А. А. Федотов; Министерство образования и науки Российской Федерации, Самар. гос. аэрокосм. ун-т им. С. П. Королева (нац. исслед. ун-т). Электрон. текстовые и граф. дан. (1,0 Мбайт). Самара, 2012. 1 эл. опт. диск (CD-ROM).

ПРИБОР ДЛЯ ДИАГНОСТИКИ СОСТОЯНИЯ ПОСТРАДАВШЕГО ПО БИОЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ МОЗГА В ЧС

А.П. Володин

Научный руководитель: к.т.н., доцент Н.С. Тархов

Тульский государственный университет, г. Тула

В настоящее время большое внимание уделяется медицине катастроф. В условиях чрезвычайной ситуации (ЧС) необходимы приборы, позволяющие точно определить состояние пострадавшего в короткий промежуток времени. Поэтому вопрос проектирования таких систем является актуальным для инженеров-приборостроителей.

В случае бессознательного состояния пострадавшего на первый план выступает оценка состояния его систем жизнеобеспечения. Сигналом того, что пострадавший находится в критическом состоянии и требуется

срочное реанимационное вмешательство, является наличие следующих признаков:

- Остановка дыхания;
- Остановка сердцебиения;
- Отсутствие реакции зрачков на свет.

При их наличии встает вопрос о смерти мозга, а именно она является главным критерием смерти человека [1]. Смерть мозга определяется по полному прекращению функции центров ствола головного мозга, которые контролируют дыхательный, зрачковый, а также некоторые другие жизненно важные рефлексы. По стандартам Международной организации здравоохранения смерть мозга констатируется только после тщательных исследований и наблюдения в течение 12 часов отсутствия функции мозга и рефлексов ствола головного мозга.

Для диагностики смерти мозга очень важны показатели электроэнцефалограммы (ЭЭГ) - регистрация биоэлектрической активности мозга (БЭА).

Работники медицинских служб, используя приборы, позволяющие фиксировать состояние человека по критериям, описанным ранее, не всегда способны точно констатировать смерть человека из-за недостаточного спектра сканируемых прибором параметров.

В РФ на законодательном уровне предусмотрен временной интервал, в котором произведение реанимационных мероприятий является не только оправданным, но и необходимым. Этот интервал равен 30 минутам с начала остановки дыхания [2]. Если же пострадавшему в этот промежуток времени помощь не была оказана (не проводилась реанимация), то чаще всего констатация смерти обосновывается отсутствием пульса и дыхания у человека.

При проведении поиска систем, принцип работы которых схож с принципом работы разрабатываемого аппарата, для диагностики

состояния пострадавшего по БЭА мозга была найдена система интегрального мониторинга «Симона 111», которая предназначена для неинвазивного измерения физиологических показателей центральной и периферической гемодинамики, транспорта и потребления кислорода, функции дыхания, температуры тела, функциональной активности мозга, активности вегетативной нервной системы и метаболизма [3].

Данный аппарат выполняет поставленные перед ним задачи, но встроенная в него система контроля ЭЭГ, которая определяет амплитуду и частоту электрических сигналов головного мозга, не используется в формировании заключения/предупреждения о смерти мозга.

Более правильно судить о состоянии пострадавшего можно не только по изменению частоты и амплитуды сигналов головного мозга, но и по уровню связей между отдельными его точками. У среднестатистического человека параметры таких связей схожи и поэтому их изменение может свидетельствовать о каких-либо необратимых изменениях в мозге [4].

В связи с вышеуказанными проблемами предлагается модернизировать (дооснастить) уже существующие приборы, определяющие базовые критерии жизнедеятельности пострадавшего, системами расчета уровней связности электрической активности головного мозга человека.

Работа прибора для диагностики состояния пострадавшего по БЭА мозга основана на способности головного мозга генерировать электрические сигналы. Определение состояния человека зависит не только от интенсивности и величины сигналов, но и степени связности и синхронизации сигналов.

Структурная схема прибора показана на рис.1.

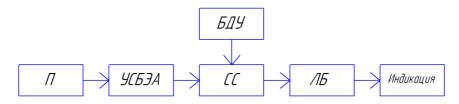


Рис. 1. Структурная схема прибора:

П – пациент; УСБЭА – усилитель сигнала биоэлектрической активности; СС- схема сравнения; БДУ- база данных устройства; ЛБ - логический блок

При подключении устройства к пациенту с помощью нескольких электродов снимается БЭА в каждой (контрольной) точке головного мозга течение 2 минут. При пострадавшего разных физических психологических состояниях его БЭА меняется. При угасании жизненных функций во время остановки дыхания БЭА мозга будет со временем Отсутствие таковой будет свидетельствовать снижаться. пострадавшего. В БДУ заложены граничные параметры, благодаря которым информация в виде сигнала поступает на средство сравнения, что позволяет определить степень тяжести состояния человека. проведения операций логический блок, получая информацию со схемы сравнения, оповещает медицинского работника о состоянии потерпевшего. Далее спасатель принимает решение о проведении реанимационных мероприятий или констатирует факт смерти.

При улучшении уже имеющихся аппаратов таким способом повышается точность диагностики до 99 %. Может быть снижен процент смертности в ЧС.

Кроме предложенной идеи анализа состояния человека должна быть актуальна разработка криогенных систем, которые позволят увеличить шансы успешного проведения реанимации через более продолжительное время.

Литература

- 1. Берт Д. Реанимация при остановке сердца / Д. Берт, Дж. Томас, Я. Вилсон // Update in anaesthisia (Журнал Всемирной Федерации обществ анестезиологов). 2000. Вып. 5. С. 26-41.
- 2. Об утверждении правил определения момента смерти человека, в том числе критериев и процедуры установления смерти человека, правил прекращения реанимационных мероприятий и формы протокола установления смерти человека. Постановление Правительства РФ от 20 сентября 2012 г. N 950 [Электронный ресурс]. Режим доступа: URL:http://base.garant.ru/70231774/ (дата обращения 8.12.2015).
- 3. Система интегрального мониторинга «Симона-111» регистрационное удостоверение № ФСР 2008/03787 [Электронный ресурс]. -Режим доступа: http://www.symona.ru/productions/symona111/description. (дата обращения 8.12.2015).
- 4. Гусельников В.И. Электрофизиология головного мозга / В.И. Гусельников. М.: Высшая школа, 1976. 211 с.

БИОТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ ФАКТОРА НЕКРОЗА ОПУХОЛИ

Е.В. Харченко

Научный руководитель: к.б.н., доцент О.И. Скроцкая

Национальный университет пищевых технологий, г. Киев

Фактор опухолей (ФНО) – внеклеточный белок, некроза многофункциональный провоспалительный цитокин, который синтезируется в основном моноцитами и макрофагами. Влияет на липидный метаболизм, коагуляцию, устойчивость инсулину, функционирование эндотелия, стимулирует продукцию интерлейкинов (ИЛ-1, ИЛ-6, ИЛ-8), интерферона-гамма, активирует лейкоциты, является одним из важных факторов защиты от внутриклеточных паразитов и вирусов [1].

Биологические эффекты ФНО зависят от его концентрации. В низких концентрациях он действует в месте индукции, как пара- и аутокринный регулятор аутоиммунных реакций в ответ на травму или инфекцию. Он основной стимулятор для нейтрофилов и эндотелиальных клеток, для их адгезии и дальнейшей миграции лейкоцитов, пролиферации фибробластов и эндотелия при заживлении раны. В средних концентрациях ФНО-альфа, попадая в кровь, действует как гормон, производя пирогенный эффект, стимулирует образование фагоцитов, усиливает свертываемость крови, снижает аппетит, а также является важным фактором развития кахексии при таких хронических заболеваниях, как туберкулез и рак [2].

Первое поколение очищенных препаратов ФНО-альфа получали благодаря культивированию иммунокомпетентных клеток животных или человека, стимулируя образование ФНО бактериальными липополисахаридами. Но получение ФНО таким способом является долговременным и трудоемким, кроме того, клетки-продуценты не обеспечивают высокий выход целевого продукта, также сложно говорить о безопасности такого продукта, учитывая возможную аллергенность и зараженность донорского материала инфекционными агентами [3].

Следующим поколением препаратов ФНО-а стали препараты, полученные основе рекомбинантных продуцентов. Технология на рекомбинантного получения ФНО-альфа базируется на переносе фрагментов ДНК, кодирующей данный белковый триммер В бактериальную клетку-реципиент [3].

Среди таких продуцентов дрожжи *Pichia pastoris* GTS115/pTNF 6-5, при периодическом культивировании которых уровень ФНО составляет

32 % от растворимых белков [4]. Также для производства белков используются млекопитающие системы экспрессии, например, клетки яичника китайского хомячка (СНО). Культуры эукариотических клеток имеют преимущество, так как белки ФНО, которые они продуцируют, часто имеют биологически активную триммерную форму. Недостатком же является низкая продуктивность клеток СНО и относительно длительный период культивирования, что делает процесс более затратным [5].

Наиболее широко используемыми продуцентами рекомбинантного фактора некроза опухолей являются клетки *Escherichia coli* (табл. 1).

Учитывая приведенные в таблице данные, можем сделать предварительный вывод, что самыми продуктивными штаммами ФНО являются штаммы *E. coli* BL21 (DE3) pTNF5 и *E. coli* C600/pBV-TRAIL, которые производят ФНО в наибольших количествах (в миллиграммах на литр культуральной жидкости): 70 и 1600, соответственно.

При сравнении продуцентов следует обратить внимание, что при культивировании штамма E. coli C600/pBV-TRAIL количество синтезируемого ФНО почти в 23 раза больше, чем при культивировании E. coli BL21 (DE3) pTNF5. Также штамм E. coli C600/pBV-TRAIL имеет преимущество в плане индукции синтеза целевого белка, индукция производится повышением температуры в культуральной среде до 42 °C, что в отличие от штамма E. coli BL21 (DE3) pTNF5 не требует внесения дорогостоящего индуктора IPTG.

Стоит отметить, что важным фактором, предопределяющим высокий выход рекомбинантного ФНО при культивировании штамма $E.\ coli$ C600/pBV-TRAIL, является внесение в культуральную среду подпитки ионами Zn^{2+} .

Таблица 1 Синтез ФНО рекомбинантными штаммами Е. coli

Проду- цент	Время культиви- рования, ч	Концентрация ФНО, мг/л	Особенности процеса биосинтеза
E. coli BL21(DE3) pTNF5	8	70	Температура культивирования 30 °C, индуктор синтеза целевого белка (изопропил- β-D-1-тиогалактопиранозид, IPTG) добавляется в начале процесса культивирования [6]
E. coli BL21(DE3) hTNF- pET11	11,5	50	Температура культивирования 37 °C, индукция целевого продукта вызывается внесением в среду IPTG по достижении необходимого значения оптической плотности культуральной среды [7]
E. coli BL21(DE3) pLysS	16	28	Температура культивирования 30 °C, синтез целевого продукта индуцируется добавлением в культуральную жидкость IPTG по достижении необходимого значения оптической плотности культуральной среды [8]
E. coli C600/pBV- TRAIL	30	1600	Температура культивирования 30 °C, через 26 ч культивирования температуру повышают до 42 °C для индукции синтеза целевого белка. Применяется двухступенчатая стратегия подпитки ионами цинка: с начала культивирования и до 26-го часа вносится источник ионов Zn (ZnSO ₄ ×7H ₂ O) в концентрации 0,5 г/л, с 26-го часа вносится еще 2,3 г/л источника катионов цинка и культивирование продолжают еще 4 ч [9]

Добавление в питательную среду ионов цинка увеличивает продукцию растворимого ФНО и увеличивает количество фактора некроза опухоли в тельцах включения. Это можно объяснить специфическим влиянием ионов на белковую структуру ФНО – стабилизацию его гомотримерной формы.

Таким образом, использование рекомбинантных клеток $E.\ coli$ для получения ФНО имеет следующие преимущества: относительно высокую продуктивность, меньшее время экспозиции при культивировании и относительную экономическую рентабельность.

Литература

- 1. Шмелёв В.А. РЕФНОТ. Рекомбинантный фактор некроза опухолей-Тимозин-α1, препарат с низкой системной токсичностью для лечения онкологических заболеваний / В.А. Шмелёв. М.: Рефнот-Фарм, 2010. 92 с.
- 2. Grivennikov S. I. Immunity, Inflammation, and Cancer / S. I. Grivennikov, F. R. Greten, M. Karin // Elsevier Inc. 2010. Vol. 140. P. 883-899.
- 3. Methods for preparation of recombinant cytokine proteins V. mutant analogues of human interferon- γ with higher stability and activity / S.E. Pechenov, R.V. Tikhonov, L.N. Shingarova et al. // Protein Expression and Purification. 2002. Vol. 24. P. 173-180.
- 4. Pat. USA № 5.002.876 East production of human tumor necrosis factor / Kotikanyadan S., Motohiro F., Rica H. Publ. 26.03.1991.
- 5. Demain A.L. Production of recombinant proteins by microbes and higher organisms / A.L. Demain, P. Vaishnav // Biotec. Advances. 2009. Vol. 27. P. 297-306.

- 6. Новый штамм-продуцент фактора некроза опухолей человека на основе $E.\ coli\ /\ E.B.\ Суровцева,\ Т.В.\ Кузнецова,\ В.Г.\ Хоменкова и др. // Биоорган. хим. <math>-2005.$ № 5. С. 474-481.
- 7. Curnis F. Production and Characterization of Recombinant Human and Murine TNF / F. Curnis, A. Corti // Methods in Molec. Med. 2004. Vol. 98. P. 9-22.
- 8. In vivo tumor delivery of a recombinant single-chain Fv::tumor necrosis factor-alpha fusion [correction of factor: a fusion] protein / S.P. Cooke, R.B. Pedley, R. Boden et al. // Bioconjug. Chem. 2002. Vol. 13. P. 7-15.
- 9. Improvement of expression level and bioactivity of tumor necrisis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) by a novel zinc ion feeding strategy / Ai-You Sun, Ya-Ling Shen, Ji-Cheng Yin et al. // Biotech. Lett. 2006. –Vol. 28. P. 1215-1219.

ИЗУЧЕНИЕ ЧАСТОТЫ СЛИЯНИЯ И ВЕРХНЕГО ПОРОГА СЛЫШИМОСТИ МЕТОДОМ АУДИОМЕТРИИ

Д.Д. Цой, Е.А. Хилько, Т.В. Арутюнян, Т.К. Бородовицына, А.Н. Омельченко, А.В. Михайлов Научный руководитель: д.ф.-м.н., профессор Н.М. Богатов

Кубанский государственный университет, г. Краснодар

Функциональная характеристика слухового анализатора имеет важное значение не только для диагностики ушных заболеваний, но и для профотбора (отбор кандидатов для некоторых профессий, определение выносливости). Особенно важным является массовое исследование детей с целью выделить группы с начинающимися нарушениями слуха (для последующей профилактики тугоухости). Наконец, большую роль играют

методы функционального исследования уха при выборе приборов, улучшающих слух. Каждая из упомянутых задач имеет определенный объем и свой метод исследования функций звукового анализатора. Картина заболевания бывает иногда настолько ясна, что используют только самые несложные приемы, позволяющие получить достаточные сведения о функциональных способностях уха.

способов диагностики нарушения слуха является Одним ИЗ аудиометрия – измерение остроты слуха. Т. к. острота слуха определяется главным образом порогом восприятия звука, то аудиометрия сводится к определению наименьшей силы звука, воспринимаемого человеком. Аудиометрию производят специальными электроакустическими приборами – аудиометрами. График зависимости понижения слуха от частоты называется аудиограммой. Для построения аудиограммы можно использовать также генераторы звуковой частоты. Эти приборы позволяют определить уровни интенсивности (уровни звукового давления) на пороге слышимости для разных частот и построить график зависимости этих уровней от частоты – кривую порога слышимости. Сопоставляя найденные пороги с соответствующими величинами для нормального уха (ISO-R-389), находят потерю слуха на каждой выбранной частоте и строят аудиограмму.

Абсолютная слуховая чувствительность характеризуется как минимальная интенсивность звука, при которой вероятность его обнаружения равна 0,5. Эта интенсивность принята за порог слышимости.

Наиболее важная функция слуха — разборчивость речи — зависит от состояния зоны речевых частот, поэтому проверяются именно речевые частоты. На каждую проверяемую частоту выявляется порог слышимости. Начиная с 35-40 лет, происходит повышение порогов слышимости на высоких частотах. На основании измерений среднего абсолютного порога слышимости, проведенных на больших группах здоровых молодых людей

в разных странах, установлен стандарт на нулевой аудиометрический уровень ISO-R-389, и действует международный аудиометрический стандарт МЭК 645[1].

Изучение частоты слияния и верхнего порога слышимости методом проводится В процессе изучения биофизики использованием генератора звуковых волн, стереоскопических наушников, вольтметра В7-38, переключателя каналов. Был проведен эксперимент по определению порога слышимости различных частот Эксперимент проводился в небольшой комнате без окон, для того чтобы снизить влияние посторонних шумов на его ход. Измерения при обследовании аудиологическом испытуемых основывались на предъявлении им набора звуковых сигналов и получении от них речевого отчета относительно обнаружения ими этих сигналов, а также о сходстве и различии предъявленных стимулов.

По результатам измерений были построены графики зависимости напряжения от частоты в логарифмическом масштабе (аудиограммы), из которых были определены частотный диапазон восприятия звука, порог слышимости и верхний порог слышимости. На оси абсцисс отмечаются частоты, соответствующие частотам генератора звуковых волн. По оси ординат откладывается интенсивность стимула в дБ, в верхней части аудиограммы до 110-120 дБ у основания ее. При патологии среднего уха нарушается передача звуковых сигналов от наружного уха к внутреннему, поэтому пороги слышимости в той или иной степени повышаются [2].

В эксперименте принимали участие люди различных возрастных групп (от 18 до 70 лет).

Исследовав различных испытуемых и сравнив результаты эксперимента с эталонными значениями, было получено большое количество значений без патологий, а также выявлены 2 случая с

патологиями (рис.1) — понижение порога звуковосприятия в области 2 кГц — характерный симптом кондуктивной тугоухости.

График кривой порога слышимости

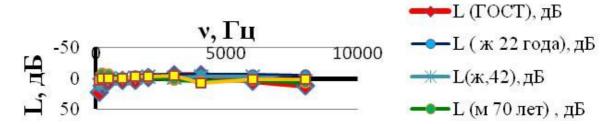


Рис. 1. График зависимости звукового давления от частоты

При опросе данных испытуемых выяснилось, что работа одного из них (31 год) связана с постоянным пребыванием в шумных помещениях, а другой (70 лет) имеет поставленный диагноз кондуктивной тугоухости.

Таким образом, реализована возможность первичной оценки состояния слуха и на основании полученных данных — выявления наличия патологий.

Литература

- 1. Таварткиладзе Г.А. Клиническая аудиология / Г.А. Таварткиладзе Т.Г. Гвелесиани. М.: Святигор Пресс, 2003. 74 с.
- 2. Глинов Д.В. Аудиометрические методы диагностики состояния слухового анализатора / Д.В. Глинов, Д.П. Юсупов, Л.Ф. Добро // Современное состояние и приоритеты развития фундаментальных наук в регионах : труды X Всерос. науч. конф. молодых ученых и студентов : в 2 т. Краснодар: Просвещение-Юг, 2013. Т.1. С. 36-38.

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ПОЛИЛАКТИДА В МЕДИЦИНЕ

И.И. Шайхнуров

Научный руководитель: к.х.н., доцент И.В. Жукова

Казанский национальный исследовательский технологический университет, г. Казань

Основными проблемами имплантации в медицине являются токсическое, канцерогенное и аллергическое действия, отторжение имплантата организмом реципиента, сопровождаемое нагноением и другими патологическими процессами, что требует в последующем хирургического вмешательства, с целью удаления инородного тела из организма человека, что может привести к осложнениям. Эти проблемы решает натуральный материал, из которого возможно изготовление имплантатов – полилактид.

Полилактид является биосовместимым, термопластичным и биоразлагаемым алифатическим полиэфиром. Мономером полилактида является молочная кислота, соответственно в качестве сырья возможно использование возобновляемых ресурсов, таких как кукуруза, сахарный тростник и многое другое. Это обусловливает простоту производства, отсутствие влияние на экологию и природу в целом, а также бережливое отношение к невозобновляемым ресурсам планеты Земля [1].

Полимер молочной кислоты может использоваться в хирургии глаза, нейрохирургии, эндопротезировании в хирургии, травматологии и ортопедии, черепно-лицевой хирургии, стоматологии и фармакологии.

Биосовместимость полилактида обусловливает возможность его использования в качестве материала для временных имплантатов и

шовных материалов. Неотъемлемым преимуществом полилактида является его биоразлагаемость без токсичных для человека продуктов разложения, ибо полимер разлагается до мономеров, то есть до молекул молочной кислоты, которые в свою очередь перерабатываются организмом как одно ИЗ свойственных ему веществ, что исключает хирургическое вмешательство c целью исключения имплантата ИЗ организма пациента [3].

В зависимости от вида имплантации, в частности в остеофиксации, необходимое время нахождения имплантата обусловливается локализацией, тяжестью, формой и направлением осложнения, а также механизмом его возникновения. Возможен контроль времени полного разложения полилактида путем регулирования содержания мономера в полимере и ориентации, которая в свою очередь влияет ещё и на прочность, модуль упругости и термостабильность [4].

Биоактивность полилактида обусловливает высокую скорость регенерации тканей вокруг места имплантации, с последующим замещением имплантата вследствие его полного разложения, возможность использования вещества в замещении регенерируемых тканей в хирургических вмешательствах.

Также возможно использование полимера молочной кислоты в фармацевтике, а именно в пролонгированных лекарственных формах. Сущность данной формы лекарственных средств заключается в том, что она позволяет контролировать время и дозу высвобождения лекарственных средств, что даст возможность уменьшить побочные действия и раздражающее действие лекарственного средства на желудочно-кишечный тракт организма принимающего, а также позволит уменьшить частоту приема и курсовую дозу [2].

Современные технологии, создаваемые не для конкретной области наук, часто можно приспособить к использованию в медицине и

медицинской технике. Одним из примеров таких технологий является технология трехмерной печати.

С помощью 3D-принтера является возможной печать любых заданных объектов, включая различные имплантаты. Уникальность данной технологии заключается в том, что любой имплантат можно разработать по индивидуальным параметрам пациента.

Температурные характеристики полилактида делают его хорошим материалом для использования в качестве материала для трехмерной печати. При использовании вентилятора для охлаждения изделие из полимера молочной кислоты быстро затвердевает, практически не деформируясь при охлаждении. Низкие температуры размягчения и плавления, 50 и 180 °C соответственно обусловливают меньшую энергозатратность в процессе 3D-печати [2].

Проблемой имплантатов из полилактида является его чистота, что является обязательным параметром при использовании в медицинских целях и немного усложняет процесс его синтеза [5].

Литература

- 1. Википедия [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Полилактид, свободный. Дата обращения 2.11.2014.
- 2. База знаний «МногоЧернил.ру» [Электронный ресурс]. Режим доступа: http://mnogochernil.ru/newsroom/abs-pla-plastic, свободный. Дата обращения 13.06.2014.
- 3. Сайт РГУ нефти и газа им. И.М. Губкина «Материалы с необычными свойствами» [Электронный ресурс]. Режим доступа: http://anomal.unicor.ru/effects/catalog/est/byId/description/990/index.html, свободный.

- 4. Шляхтин А.В. Влияние среды на реакционную способность мономеров в синтезе полилактидов и сополимеров акрилонитрила: дис... канд. хим.наук / А.В. Шляхтин. М., 2014. –118 с.
- 5. Шкарин А.А. Технология получения полилактида для изготовления изделий медицинского назначения: науч. отчет / А.А. Шкарин, Ю.Е. Похарукова, А.Л. Зиновьев. Томск: НИ ТПУ, 2014. 22 с.

ОЦЕНКА АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ПО ОПТИМАЛЬНОМУ КРИТЕРИЮ

К.Е. Швырева, Ю.В. Суслова, Т.С. Сюксина Научный руководитель: д.т.н., профессор Е.И. Глинкин

Тамбовский государственный технический университет, г. Тамбов

Известен метод диагностики заболеваний сердечно-сосудистой системы [1], основанный на использовании взвешенных значений восьми показателей гемодинамики: минутный объем кровообращения (МОК), систолическое (САД), артериальное давление диастолическое артериальное давление (ДАД), среднее артериальное давление (СрАД), частота сердечных сокращений (ЧСС), ударный объем (УО), общее периферическое сопротивление сосудов $(O\Pi CC)$, возраст коэффициента К. последующим определением диагностического представленного кодом в нормально дизъюнктивной форме:

$$K = \sum_{i=1}^{8} M_i X_{iH} ,$$

где $i = \overline{1,8}$ — число показателей гемодинамики; X_{iH} — дифференциальные показатели, выбранные приведенными погрешностями с относительными

диапазонами $\{0,1\}$; M_i — весовые дифференциальные коэффициенты, формируемые средневзвешенными мерами из единичной суммы.

Недостатком метода является недостоверная метрологическая эффективность, обусловленная низкой объективностью из-за необоснованного числа критериев оценки состояния сердечно-сосудистой формируемых ПО субъективным системы, ненормируемым дифференциальным и интегральным мерам: приведенным погрешностям со средневзвешенными весовыми коэффициентами, рассчитываемыми итерационным анализом.

Исследуем группу пациентов с известными показателями систолического (САД) и диастолического (ДАД) артериального давления (табл.1).

Таблица 1 Показатели артериального давления

Пациенты, №	1	2	3	4	5	6	7	8	9	10	11	12	13
САД, мм рт. ст.	80	85	90	95	100	105	110	115	120	125	130	135	140
ДАД, мм рт. ст.	40	45	50	55	60	65	70	75	80	85	90	95	100

Для оценки объективности и, как следствие, точности полученных данных воспользуемся мультипликативной симметричной мерой Q, представленной отношением произведения показателей, как для систолического, так и для диастолического артериального давления группы пациентов к оптимальному эквиваленту, представленному средним арифметическим в n-й степени [2,3]. Оценки точности Q и погрешности ε при объединении двух показателей приведены в табл. 2,3.

Дифференциальные оценки Q показывают достоверность измерений по отношению к эквиваленту. Действительные показатели САД и ДАД нормированы значениями соответственно 110 и 70 мм рт. ст, что доказывает максимальная единичная точность при нулевой погрешности.

Таблица 2

Дифференциальные оценки двух показателей САД

ДАД,	80	85	90	95	100	105	110	115	120	125	130	135	140
MM													
рт.ст.													
Q, %	92,6	94,8	96,7	98,1	99,2	99,8	1	99,8	99,2	98,1	96,7	94,8	92,6
ε, %	7,4	5,2	3,3	1,9	0,8	0,2	0	0,2	0,8	1,9	3,3	5,2	7,4

Таблица 3 Дифференциальные оценки двух показателей ДАД

ДАД,	40	45	50	55	60	65	70	75	80	85	90	95	100
мм рт.ст.													
Q, %	81,6	87,2	91,8	95,4	97,9	99,5	1	99,5	97,9	95,4	91,8	87,2	81,6
ε, %	18,4	12,8	8,2	4,5	2,1	0,5	0	0,5	2,1	4,5	8,2	12,8	18,4

Таблица 4 Интегральные оценки ДАД и САД

Пациенты, №	Q, %	ε, %
1	99,36	0,64
2	99,83	0,17
3	99,93	0,07
4	99,98	0,02
5	99,996	0,004
6	99,999	0,001
7	1	0
8	99,999	0,001
9	99,996	0,004
10	99,98	0,02
11	99,93	0,07
12	99,83	0,17
13	99,36	0,64
13	99,36	0,64

Докажем возможность интегральной оценки Q в зависимости от числа показателей. Табл. 4 систематизирует интегральные Q и ε при объединении двух показателей САД и ДАД мультипликативной симметричной мерой Q.

Табл. 2 - 4 иллюстрируют графики дифференциальных оценок САД (рис. 1,а) и ДАД (рис. 1,б) и вместе с ними интегральной оценки (рис. 2).

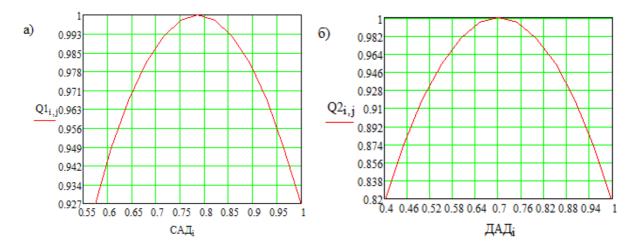


Рис. 1. Графики дифференциальных оценок САД и ДАД

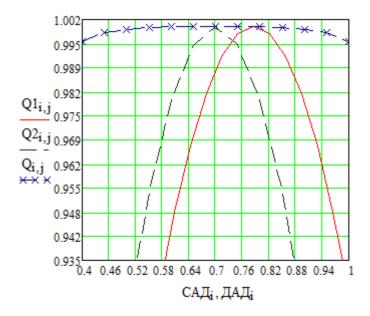


Рис. 2. Графики дифференциальных оценок САД и ДАД с их общим решением

Анализ графиков (рис. 1, 2) показывает, что при увеличении показателей разброс увеличивается, а обобщенный показатель расширяется по отношению к каждому в отдельности.

Из оценки систолического и диастолического артериального давления по оптимальному критерию получены следующие выводы:

- 1. Дифференциальные и интегральные оценки мультипликативно симметричной меры показывают достоверность измерений по отношению к эквиваленту. Действительные показатели САД и ДАД нормированы значениями соответственно 110 и 70 мм рт.ст, что доказывает максимальная единичная точность при нулевой погрешности;
- 2. При увеличении числа показателей разброс увеличивается, а обобщенный показатель расширяется по отношению к каждому в отдельности, т. е. чем больше оценивать параметров, тем шире диапазон;
- 3. При смещении диапазона измерений в среднюю область точность оценки увеличивается, а погрешность снижается;
- 4. При сдвиге диапазона к границам измерения точность уменьшается, а погрешность растет.

Литература

- 1. Попова Ю.В. Разработка метода диагностики заболеваний сердечно-сосудистой системы / Ю.В. Попова, К.Е. Швырева, Е.А. Леонтьев // Сб. трудов XXVII Междунар. науч. конф. Тамбов: Тамбовск. гос. техн. ун-т, 2014. Т.6. Секции 6, 7, 8. С. 155-157.
- 2. Чичёв С.И. Методология проектирования цифровой подстанции в формате новых технологий / С.И. Чичёв, В.Ф. Калинин, Е.И. Глинкин. М.: Спектр, 2014. 228 с.
- 3. Глинкин Е.И. Оптимальные меры оценки эффективности / Е.И. Глинкин // Вестник Тамбовского университета. Тамбов: ТГУ, 2014. Т.19. Вып.6. С. 1863-1869.

МЕХАНИЗМЫ ДЕЙСТВИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ЖИВЫЕ ОРГАНИЗМЫ

С.Д. Шехурдина, Т.Ю. Шувалова Научный руководитель: д.ф.-м.н., профессор М.Ф. Умаров

Вологодский государственный университет, г. Вологда

Ионизирующая способность определенных видов излучения лежит в основе их биологического действия. Биологическое действие - наиболее поздно открытое свойство рентгеновского излучения, заключающееся в его воздействии на биологические объекты, и в частности организм человека. Большей частью оно обусловлено ионизацией биологически значимых структур (ДНК, РНК, молекул белков, аминокислот, воды и т.д.), что ведет к их повреждению, в частности наследственной информации и в целом к неблагоприятным последствиям на уровне макроорганизма. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Ионизирующее излучение является мутагенным фактором. Это создает необходимость использовать меры защиты от ионизационного излучения. Основные нормативы облучения (допустимые пределы доз) конкретизируются и уточняются в санитарно-гигиенических федеральных нормах и правилах РФ [1-3].

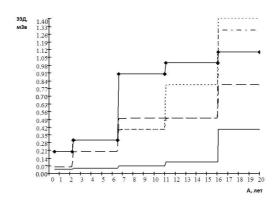
Ионизирующее излучение действует на клетки тем сильнее, чем они моложе и чем менее дифференцированы. На основании морфологических признаков поражаемости органы и ткани распределяются в следующем нисходящем порядке: лимфоидные органы (лимфатические узлы, селезенка, зобная железа, лимфоидная ткань других органов), костный мозг, семенники, яичники, слизистая оболочка желудочно-кишечного тракта. Еще меньше поражаются кожа с придатками, хрящи, кости,

эндотелий сосудов. Высокой радиоустойчивостью обладают паренхиматозные органы: печень, надпочечники, почки, слюнные железы, легкие.

В последние годы для оценки биологического эффекта при облучении органов, тканей и организма в целом с учетом влияния разных видов излучения и радиочувствительности отдельных органов вводили эффективную эквивалентную дозу (ЭЭД). Поэтому дозы облучения органов и тканей следует учитывать с разными коэффициентами. Для организма в целом ЭЭД $(M_{9\phi})$ может быть определена как сумма произведений эквивалентной дозы в отдельных органах и тканях на соответствующий коэффициент радиационного риска для данного органа или ткани:

$$M_{\theta\phi} = \sum M_i \cdot b_i, \tag{1}$$

где M_i — эквивалентная доза излучения i — го типа; b_i — коэффициент радиационного риска (взвешивающий фактор) для данного вида излучения.


В связи с этим целью настоящей работы является анализ известных рентгенологических исследований и на их основе определение зависимости эквивалентной эффективной дозы рентгеновского излучения от возраста пациента с учетом численных значений коэффициентов перехода, соответствующих набору технических, геометрических и дозиметрических параметров.

При общем однократном облучении организма разные органы и ткани обладают различной чувствительностью к действию радиации. Так, при одинаковой эквивалентной дозе риск генетических повреждений наиболее вероятен при облучении репродуктивных органов. Риск возникновения рака легких при воздействии рентгеновского излучения в равных условиях облучения выше, чем риск возникновения рака кожи и т.д. Поэтому понятно, что эффективную дозу облучения отдельных

элементов живых систем следует рассчитывать по формуле (1) с учетом их радиочувствительности. Для этого используются коэффициенты радиационного риска (b_i) , приведенные в таблице 1.

Органы и ткани	b_i	Органы и ткани	b_i
Гонады (наследственные	0,25	Пищевод	0,05
эффекты)			
Молочная железа	0,15	Кожа	0,01
Красный костный мозг	0,12	Желудок	0,12
Легкие	0,12	Мочевой пузырь	0,05
Щитовидная железа	0,05	Поверхность кости	0,03
Печень	0,05	Тонкая кишка	0,12
Грудная железа	0,05	Остальные ткани	0,05

Используя формулу (1), таблицу 1 и данные, приведенные в [2,3], построен график зависимости ЭЭД для прямой проекции при рентгенографии различных органов организма от возраста (рис.1).

Как видно из рис.1, с возрастом пациента ЭЭД возрастает. Максимальная ЭЭД требуется для проведения рентгенографии шейных позвонков, а минимальная – для органов грудной клетки.

Таким образом, процессы взаимодействия рентгеновского излучения с тканями протекают по-разному и зависят от вида ткани или органа, а также от возраста пациента. Но во всех случаях происходит преобразование энергии рентгеновского излучения в другие виды энергии. В результате часть энергии рентгеновского излучения поглощается веществом, что в конечном итоге приводит к биологическим изменениям в живом организме.

Кроме того, при проведении медицинского исследования с использованием ионизирующего излучения необходимо оценить значение эффективной дозы облучения пациента.

Определение значения эффективной дозы на практике представляет значительные сложности, т.к. она не может быть непосредственно измерена и требует проведения сложных расчетов. Исходные данные для расчета эффективной эквивалентной дозы облучения пациентов должны включать:

- технические характеристики рентгеновской аппаратуры;
- геометрические характеристики рентгенологического исследования;
- дозиметрические характеристики рентгенологического исследования.

Литература

- 1. ГОСТ 26140-84. Аппараты рентгеновские медицинские. Общие технические условия.
- 2. СанПиН 2.6.1.1192-03. Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований.

3. Контроль эффективных доз облучения пациентов при медицинских рентгенологических исследованиях. Методические указания по методам контроля МУК 2.6.1.1797-03.

МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ КАТАЛИТИЧЕСКИХ АНТИТЕЛ С КЛЕТКАМИ – МИШЕНЯМИ

О.О. Бородина

Научный руководитель: к.б.н., доцент И.В. Лыч

Национальный университет пищевых технологий, г. Киев

Иммунная система млекопитающих не только является защитой организма от патогенной микрофлоры окружающей среды, поддерживает гомеостаз. Здесь важную роль играют антитела. Обычно они делятся на два типа: те, которые направлены к чужеродным антигенам, и те, которые взаимодействуют с собственными антигенами. Такие антитела аутоантителами. Они обнаружены, называются как здоровых людей, клинически так В организме людей, больных аутоиммунными и онкологическими заболеваниями. Антитела могут не только связывать компоненты патогенных вирусов или бактерий, но и гидролизировать их ДНК, РНК, нуклеотиды, белки и полисахариды. Иммуноглобулины, которые имеют каталитический центр, называются абзимами. На сегодняшний день среди природных абзимов особый медицинский и коммерческий интерес имеют природные антитела с протеолитической активностью, их еще называют протабзимами, и ДНК – гидролизирующей активностью или ДНК-абзимы, которые чаще всего участвуют в патогенезе заболеваний аутоиммунной природы. Поиском новых свойств антител занимаются ученые всего мира.

Известны две теории образования природных каталитических антител. Согласно первой, индуктором является сам субстрат как в нативной, так И В деформированной конформации или комплексообразовании с другими биомолекулами. Вторая концепция связана с теорией Эрне и свидетельствует о том, что антиидиотипические антитела, направленные к антигенсвязывающему центру IgG, узнающие активный центр какого-либо фермента, могут сами проявлять аналогичную активность [1]. Активные центры каталитических антител могут или кодироваться в зачаточной клетке, или генерироваться в процессе созревания В-клеточного ответа, являясь результатом соматической мутации. Особую ценность для изучения возникновения каталитических антител является открытие НК-гидролизирующих иммуноглобулинов класса М в сыворотке крови больных системной кровяной волчанкой и при других заболеваниях. Как известно, V- области генов IgM не подвергаются соматическому мутагенезу и очень похожи на фрагменты зародышевого генома. Это свидетельствует о том, что каталитические элементы антигенсвязывающих центров антител заложены в иммунной системе высших организмов и не подвергаются элиминации в процессе онтогенеза.

Синтез каталитических антител при аутоиммунных патологиях наблюдается именно на те антигены, на которые и формируется специфический аутоиммунный ответ. Природные ДНК-абзимы обладают аналогичными свойствами нуклеаз. Каталитическая активность ДНКабзимов составе высокоспециализированного Fab сосредоточена в фрагмента, поскольку Гс фрагменту не характерна ДНК-гидролизирующая [2]. ДНК-абзимы обладают не только каталитической активность активностью, им также свойствен цитотоксический эффект. Процесс взаимодействия ДНК-абзимов c клеткой-мишенью является многостадийным и включает в себя [2]: 1) связывание аутоантител с внешней клеточной мембраной; 2) перенос и проникновение антител в клетку и клеточное ядро с помощью трансмембранной системы; 3) непосредственное участие ДНК-абзимов в гибели ядерной ДНК и клеткимишени в целом.

При каталитической активности на геном клетки-мишени, состоящий из комплекса ДНК с ядерными белками, сначала происходит распознавание, а затем специфическое связывание антител с геномом клетки-мишени.

Для реализации цитотоксического эффекта у ДНК-абзимов участвуют два механизма [2]: 1) с помощью рецепторов клеточная смерть происходит путем апоптоза; 2) прямой цитотоксический эффект путем гидролиза генетического аппарата клетки мишени.

Следует отметить, что обе функции между собой взаимосвязаны.

Известно, что абзимы содержатся не только в крови больных, но и в молоке и молозиве здоровых рожениц, они играют положительную роль, так как обладают антибактериальной и антивирусной активностью и могут влиять на пролиферацию, дифференциацию и апоптоз клеток различных типов.

Например, исследованиями ученых показано, что абзимы молока клинически здоровых матерей способны гидролизовать рибодезоксирибонуклеозид-5-моно-, трифосфата. И Эта ДИнуклеотидгидролизирующая активность присутствует в Fab фрагментах молекулы IgG. Кроме нуклеотидгидролизирующей активности IgG также свойственна ДНК-РНК-гидролизирующая И активность, такие иммуноглобулины считаются цитотоксическими биологическими агентами, которые способны уничтожать опухолевые клетки различных линий. Для обеспечения защитной функции молока и пассивного иммунитета новорожденного исследователи обнаружили, что IgG и sIgA свойственна протеинкиназная активность и АТФ-гидролизирующая, то есть способность катализировать фосфорилирование белков, а также этим абзимам характерен гидролиз олигосахаридов [3].

Итак, исходя из сложившейся ситуации, можно сделать вывод, что каталитические антитела играют двойную роль в организме человека, поскольку они способны быть непосредственными участниками развития аутоиммунных нарушений в организме, но несмотря на это они также могут выступать защитными факторами иммунной системы человека.

Литература

- Кіт Ю. Я. Каталітично активні антитіла (абзими) молока людини /
 Я. Кіт, Р.С. Стойка / Укр. біохім. журн. 2007. Т. 79,№2. С. 5-16.
- 2. Сучков С.В. Каталитические антитела и их значение для практической медицины / С. В. Сучков // Альманах клинической медицины. $2006. N_26. C. 387-391.$
- 3. Catalytic nucleotide-hydrolyzing antibodies in milk and serum of clinically healthy human mothers / D. V. Semenov, T. G. Kanyshkova, N. A. Karotaeva et al. // Med Sci Monit. −2004. №10. P. 23-33.

СИСТЕМА ПРОГНОЗИРОВАНИЯ УРОВНЯ ЗАГРЯЗНЕНИЯ СОЦИАЛЬНЫХ РАЙОНОВ ГОРОДА

В.А. Тюрин

Научный руководитель: к.т.н., доцент А.Н. Варнавский

Рязанский государственный радиотехнический университет, г. Рязань

Для того чтобы следить за выбросами SO_2 в атмосферу непосредственно вблизи социально важных зданий, например школ, больниц или гостиниц, можно использовать датчики, которые будут

крепиться на зданиях. Эти датчики будут также собирать информацию за определенный промежуток времени и будут передавать ее на геостанцию города, где и будут составляться выводы о загрязненности воздуха на основе полученных данных [1]. Радиус выбросов вредных веществ в атмосферу зависит от различных факторов, например, от температуры окружающей среды, погодных условий, времени суток, направления ветра или от высоты самого выброса. Так, например, в холодное время года автомобиль будет выбрасывать больше загрязняющих веществ, чем в теплое время года. Это объясняется тем, что в холодную погоду автомобиль больше прогревается, больше тратит топлива на обеспечение тепла в салоне. В зависимости от направления ветра будут различаться различные уровни загрязнения. Если ветер дует непосредственно в сторону школы или больницы, то уровень загрязнения будет высоким, если ветер дует в противоположном направлении, то уровень загрязняющих веществ в воздухе будет минимальным. Немаловажным свойством рассеяния загрязняющих веществ являются и погодные условия. В связи с этим можно сделать вывод, что погода, направление ветра играют важную роль в уровне показаний загрязняющих веществ в той или иной области или части города. Так, например, при сильном ветре или ливневом дожде уровень загрязняющих веществ над данной областью будет резко падать, так как данные погодные условия выносят облако загрязнений из города, а в сильный дождь все загрязняющие вещества смываются с водой в сток, что, конечно, пагубно сказывается на состоянии почвы в данной области.

На примере г. Рязани можно рассмотреть идею проекта. Пусть выбран маршрут, по которому ежедневно проезжает огромное количество маршрутных такси. В непосредственной близости с данным маршрутом находятся социально значимые объекты. Оценим выбросы от транспорта и их влияние на социальные объекты.

Для данного расчета потребуется знать нормы выбросов автотранспорта, когда обстановка в городе нормальная, не превышает уровень загрязнения. Так, для маршрутных средств, имеющих дизельный двигатель, норма выбросов SO₂ будет в пределах 177 г. С помощью расчетов мы получили, что максимальное время, на которое может остановиться транспортное средство, составит 326 с, дольше этого времени выбросы SO₂ в атмосферу будут превышать нормы.

Также для расчета выбросов возьмем формулу [2]:

$$M = \frac{T(c)}{1200} \cdot MH$$

где М – величина загрязняющих веществ в атмосферу;

Т, с – время остановки транспорта;

Мн, Γ/c – средняя интенсивность выброса, составляет 0.5 Γ/c .

Произведем расчеты.

- 1) Время остановки 1 мин: M=60/1200*0.5=0.1 г/с, 0.1*60=6 г.
- 2) Время остановки 2 мин: M=120/1200*0.5=0.2 г/с, 0.2*120=24 г.
- 3) Время остановки 5 мин: M=300/1200*0.5=0.5 г/с, 0.5*300=150 г.
- 4) Время остановки 7 мин: M=420/1200*0.5=0.7 г/с, 0.7*420=294 г.
- 5) Время остановки 10 мин: M=600/1200*0.5=1 г/с, 1*600=600 г.

Расчет предельного уровня выбросов загрязняющих веществ в атмосферу при максимальном времени стоянки транспортного средства:

M=326/1200*0.5=0.54
$$\Gamma$$
/c, SO_{2max}=0.54*326=176 Γ .

Из расчетов видно, что с увеличением времени стоянки (остановки) маршрутное такси будет больше выделять вредных веществ в атмосферу. В связи с этим, люди, находившиеся вблизи остановки в этот момент, будут вдыхать максимальное количество вредных веществ.

Осуществлено моделирование использования датчиков, которые можно прикрепить к автомобилю и осуществить считывание информации

и передачу данных об уровне загрязняющих веществ (SO₂). Такой датчик будет питаться от автомобильного аккумулятора. Выбросы, измеряемые таким датчиком, будут приходить со всех районов города, что обеспечит полную картину обстановки загрязняющих веществ в городе. Можно будет построить целую карту, на которой будут отображаться загрязняющие уровни по всему периметру городу, в частности в социальных районах города.

Литература

- 1. Бегимбетова А.С. Распространение загрязнений в атмосферном воздухе от выбросов автотранспорта в условиях города Алматы / А.С. Бегимбетова, С.Б. Айдарова // Вестник КазНТУ. 2014. №6 (106). С. 25-29.
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб.: НИИ Атмосфера. 2005. 21 с.

СОЗДАНИЕ БИОКОМПОЗИЦИОННЫХ ПОКРЫТИЙ С ЗАДАННЫМИ СВОЙСТВАМИ НА ДЕНТАЛЬНЫХ ИМПЛАНТАТАХ

Н.В. Протасова, В.А. Гомон, А.В. Романов, Л.П. Братухина Научный руководитель: к.т.н., доцент Н.В. Протасова

Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов

Одна из важнейших задач современной науки и техники состоит в создании материалов с уникальными свойствами для разнообразных

практических приложений. Большие возможности в данной области открываются при использовании методов электроплазменной обработки материалов. Данный вид обработки обеспечивает возможность модификации поверхностей материалов в направлении приобретения ими специфических свойств, в частности износостойкости в технологии производства деталей машин и приборов или биосовместимости в технических изделиях медицинского применения [1].

большого разнообразия материалов, Среди используемых различных областях техники, выделяются материалы, важнейшим требованием к которым является совместимость с живыми тканями (биосовместимость), а функционируют они в условиях контакта с достаточно агрессивной биологической средой организма воздействием меняющихся по величине и направлению нагрузок. Детали из таких материалов, представляющие собой искусственные органы (эндопротезы), имеют сложную форму и часто отличаются малыми размерами имеют низкую технологичность. Характерными представителями таких деталей являются внутрикостные дентальные (стоматологические) имплантаты [2-6].

Исправление дефектов зубных рядов при помощи дентальных имплантатов является одной из важных и перспективных проблем современной стоматологии, т.к. потребность в зубном протезировании имеют до 40 % взрослого населения. Дальнейшее развитие имплантологии ставит перед исследователями ряд проблем, связанных с разработкой биологически активных пористо-порошковых покрытий на поверхности имплантатов, вводимых в костную ткань. В последнее время отмечается значительный интерес изучению возможности К использования синтетических аналогов неорганических составляющих костной ткани гидроксиапатита (ГА) и трикальцийфосфата (ТКФ) для внутрикостной имплантации. Эти материалы (особенно первый) обладают не только прекрасной биосовместимостью, т.к. наиболее близки по составу к минеральному компоненту костной ткани, имеющей стехиометрическое кальций-фосфорное отношение, равное 1,67, НО способны ткани, рассасываться В костной активно стимулируя ЭТОМ костеобразование. Однако их серьезным недостатком является низкая механическая прочность. Поэтому непрерывно ведутся работы по совершенствованию созданию новых технологий И нанесения биоактивных покрытий на основу имплантата. При этом приходится решать сложный комплекс технических, медицинских и биологических проблем: взаимодействие живых тканей с материалом имплантата; токсикологические, канцерогенные И коррозионные свойства; необходимость придания естественной формы и цвета зубному протезу; технологичность при обработке; экономичность; стойкость к истиранию, В стерилизуемость, низкая теплопроводность. целом задача имплантологии состоит в разработке методов получения эффективных композиций для решения конкретной медицинской задачи, т.е. стоит вопрос о создании функциональных металлических имплантатов с свойствами. Как особыми показывают исследования, перечисленные проблемы можно путем применения имплантатов сложной структуры, состоящих из металлической основы, системы переходного пористого слоя и тонкого биокерамического слоя. Чтобы костная ткань хорошо прорастала через пористую структуру имплантата, пористость переходного слоя должна быть не менее 30 % от общего объема, а размер пор 230-350 мкм. Поры должны быть открытыми и сообщаться друг с другом.

Последними исследованиями на подопытных животных при использовании имплантатов с различной пористостью установлено, что остеоинтеграция напрямую зависит как от общей пористости, так и от среднего размера пор покрытия. Т.е. различия в характеристиках пористой

структуры и морфологии имплантата вызывают неравномерность врастания костной ткани, что осложняет функционирование протеза в челюсти пациента из-за неравномерности демпфирующих характеристик и, следовательно, неоднозначности восприятия жевательных нагрузок челюстью пациента.

Плазменное напыление является наиболее перспективным способом получения биологически активных покрытий на стоматологических требуемым комплексом свойств. Важнейшими имплантатах c требованиями, предъявляемыми к этим покрытиям, являются высокая адгезия к основному материалу, строго определенная пористая структура и суммарная пористость. Установлено, что плазмонапыленные покрытия из гидроксиапатита имеют достаточно высокую адгезию, сопоставимую с таковой для титановых порошков. Считается, что это может быть получением более развитой поверхности при объяснено плазменной технологии. Так, если исходный материал имеет удельную поверхность около $10 \text{ m}^2/\Gamma$, то у плазмонапыленного покрытия она больше почти в 10 раз [2,7] при пористости 50-60 %. Суммарный объем пор составляет 0,56 см³/г, 78 % от которого составляют микропоры с радиусом 0,1-0,01 мкм, хотя присутствуют и поры 200-350 мкм, т.е. структура довольно неоднородная.

Изложенное свидетельствует о необходимости изучения влияния технологических режимов пористую напыления на структуру биокомпозиционных покрытий с целью установления возможности их формирования с вполне определенными пористыми и морфологическими характеристиками, что обеспечит их оптимальную интеграцию с костной тканью [2,7]. При этом необходимо разработать метод изготовления имплантатов, обеспечивающий высокой наряду пористостью необходимую адгезию и точность размера.

Литература

- 1. Теоретические основы разработки плазменных технологий и оборудования: монография / В.М. Таран, А.В. Лясникова, О.А. Дударева и др. Днепропетровск: ФОП Середняк Т.К, 2014. 880 с.
- 2. Лясников В.Н. Плазменное напыление в промышленности и медицине: возможности, проблемы, перспективы : монография / В.Н. Лясников, А.В. Лясникова. Днепропетровск: ФОП Середняк Т.К, 2014. 924 с.
- 3. Стоматологические имплантаты. Исследование, разработка, производство, клиническое применение / А.В. Лясникова, А.В. Лепилин, Н.В. Бекренев, Д.С. Дмитриенко. Саратов: СГТУ, 2006. 254 с.
- 4. Электроплазменное напыление в производстве внутрикостных имплантатов / К.Г. Бутовский, А.В. Лясникова, А.В. Лепилин и др. Саратов: СГТУ, 2006. 200 с.
- 5. Лясникова А.В. Биосовместимые материалы и покрытия нового поколения: особенности получения, наноструктурирование, исследование свойств, перспективы клинического применения / А.В. Лясникова, Т.Г. Дмитриенко. Саратов: Научная книга, 2011. 220 с.
- 6. Лясникова А.В. Материалы и покрытия в медицинской практике / А.В. Лясникова, В.Н. Лясников, Т.Г. Дмитриенко. Саратов: Научная книга, 2011. 300 с.
- 7. Лясникова А.В. Обоснование и реализация комбинированной механической и физико-химической обработки титановых деталей в ультразвуковом поле с учетом электроплазменного напыления композиционных покрытий: дис. ... д-ра техн. наук / А.В. Лясникова. Саратов, 2009. 320 с.

ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ПЛАЗМОНАПЫЛЕННЫХ БИОСОВМЕСТИМЫХ ПОКРЫТИЙ

Н.В. Протасова, А.В. Романов, В.А. Гомон, Л.П. Братухина Научный руководитель: к.т.н., доцент Н.В. Протасова

Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов

Работа посвящена проблеме поиска путей совершенствования технологии плазменного напыления порошковых покрытий, в частности, применительно к требованиям производства изделий медицинской техники. Плазменное напыление является одним из современных способов нанесения биосовместимых покрытий, в том числе на поверхность эндопротезов. Его перспективность внутрикостных И важность определяются тем, что ОН может заменить ряд традиционных технологических процессов, выполнявшихся ранее способами, позволяющими обеспечить высокое качество обработки либо связанными с вредными условиями на производстве и загрязнением окружающей среды. Особое внимание уделено способам повышения адгезионнокогезионных характеристик плазменных покрытий за счет предварительной обработки поверхности физико-химическими методами, а также наноструктурирования покрытий [1].

Плазменное напыление порошковых покрытий - это сложный процесс, протекание которого зависит от очень большого числа факторов: по одним данным - 60, по другим - более 100 [2-18, 19]. Поэтому в зависимости от напыляемого материала, а также от материала и формы каждого конкретного случая режимы подбирают подложки ДЛЯ экспериментально. В большом количестве переменных факторов выделяются нижеперечисленные основные, которые значительно влияют на свойства покрытий. Они также представлены на рис. 1:

- 1) факторы, связанные с источником энергии нагрева напыляемых материалов (тип источника питания, его характеристики, конструктивные особенности плазмотрона, потребляемая мощность, род рабочего газа и его расход);
- 2) факторы, связанные с напыляемым материалом (состав порошка, его физико-химические свойства, дисперсность, форма частиц, сыпучесть);
- 3) факторы, связанные с подачей напыляемого материала в плазменную струю (тип порошкового питателя, способ и место ввода порошка в струю плазмы, угол ввода и т.п.);
- 4) факторы, непосредственно связанные с процессом напыления (дистанция напыления, относительная скорость перемещения плазмотрона и подложки, ее температура, среда, в которой осуществляется напыление, угол наклона струи плазмы относительно подложки, ток дуги и напряжение, КПД плазмотрона);
- 5) факторы, связанные с деталью (марка материала, конфигурация детали, способ подготовки поверхности к напылению, шероховатость поверхности).

Очевидно, что не все группы факторов могут быть использованы для управления формированием покрытия. Факторы 1-й и 3-й групп фактически конструкцией оборудования, связаны которая обобщения основных технологических разрабатывается на основе требований к процессу напыления и не могут оперативно изменяться. Факторы 2-й группы определяются служебным назначением изделия. Дисперсность порошка может быть выбрана только при разработке технологии на основе оптимизированных требований и также не может меняться в течение процесса напыления. Из факторов 5-й группы только способ подготовки поверхности детали может быть использован для изменения свойств покрытия (адгезии). Таким образом, только факторы 4-й группы можно считать действительно управляющими переменными напыления. Действие ЭТИХ факторов использовано разработке различных методов управления (регулирования) параметров напыляемых покрытий. Опытным путем установлено увеличение адгезии покрытий благодаря пескоструйной (дробеструйной) обработке подложки, очистке поверхности, приводящей К нарушению (высвобождению) межатомных связей, возрастанию контактной температуры на выступах под напыляемыми частицами. Получившаяся шероховатая поверхность имеет значительно большую истинную площадь, чем геометрическая, что облегчает механическое сцепление частиц с подложкой. Воздушноабразивная обработка - дискретный процесс, однако вследствие быстрого спада активности в каждой точке очищенной поверхности к концу очистки всей поверхности ее активность выравнивается.

При воздушно-абразивной обработке поверхности изделий, особенно из вязких материалов, возможно ее загрязнение внедрившимися частицами абразива. Острые края частиц абразивного материала, которыми они ударяются о поверхность изделия, откалываются и остаются в материале подложки.

В связи с этими недостатками, а также с деформацией ажурных, тонких деталей воздушно-абразивную обработку иногда заменяют которое также создает химическим травлением, хорошо развитую шероховатую поверхность. Химическое травление поверхности подложки перед напылением требует разработки специальных травящих составов для каждого материала подложки. Неправильный выбор травящего раствора может дать отрицательные результаты: вызвать пассивацию поверхности и соответственно снизить адгезию покрытия. Также необходимо очищать детали от остатков травильного раствора.

Для деталей типа тел вращения при нанесении покрытий значительной толщины распространено нарезание «рваной» резьбы. Она обеспечивает наиболее высокую прочность сцепления при сдвиге за счет механического зацепления покрытия за неровности поверхности подложки. Параметры «рваной» резьбы подбираются экспериментально для правильного определения размера детали и толщины покрытия, т.к. выход гребней резьбы на поверхность снижает работоспособность покрытия.

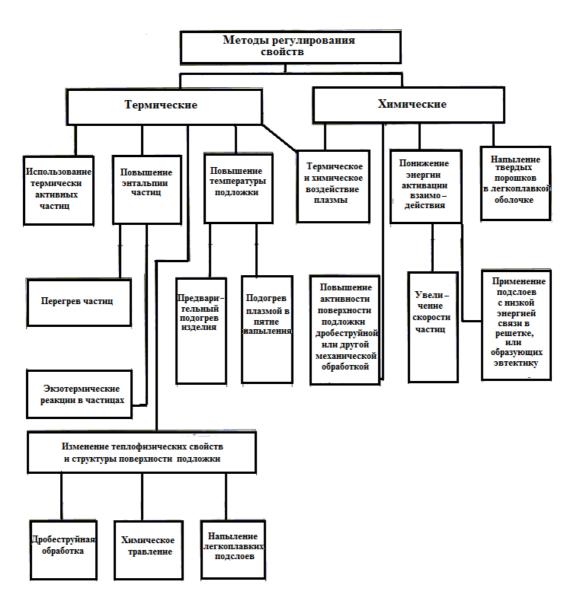


Рис. 1. Методы регулирования свойств покрытий, получаемых плазменным напылением [19]

Иногда повышают химическую активность подложек легированием их поверхности оксидами с низкой энергией связи (BaO, NaO и т.п.). Эти оксиды обычно внедряют в поверхность керамики ионным легированием.

Химико-механическое полирование - это еще один метод подготовки поверхности подложки. При нем на поверхность совместно воздействуют активная травящая среда и механические частицы полировальника. Продукты химических реакций при этом удаляются механически. Эффект обработки усиливается благодаря постоянной подаче свежего раствора в рабочую зону.

Ультразвуковой метод очистки применяется для удаления пылевидных загрязнений с подложки за счет локальных гидроударов, возникающих под действием кавитации.

Широко применяется ионное травление подложки. При ионном травлении поверхность в первую очередь очищается от загрязнений, затем обнажаются зерна металла. Если процесс продолжать, то начинает проявляться кристаллическая структура внутри зерен металла. На поверхности появляются углубления правильной формы и другие неоднородности металла, образующиеся за счет различных скоростей напыления по границам кристаллической решетки.

Как показывает ряд исследований, наиболее эффективным методом очистки и активации поверхности подложки является обработка плазмой тлеющего может разряда, которая осуществляться TOM же технологическом объеме, в котором затем осуществляется напыление. Отмечается, что применение тлеющего разряда при очистке подложек позволяет значительно улучшить функциональные и эксплуатационные свойства покрытий. При очистке в плазме тлеющего разряда подложка бомбардируется заряженными частицами, распыляющими поверхностные микрослои вместе с находящимися на них частицами загрязнений и адсорбированными газами. Одновременно происходит термообработка,

позволяющая снизить концентрацию напряжений и радиационных эффектов. Недостатком метода может быть самопроизвольный переход тлеющего разряда в дуговой за счет неравномерного распределения оксидов или загрязнений по поверхности.

Следует отметить также способ предварительного нанесения одного нескольких переходных подслоев из легкоплавких металлов, коэффициент термического расширения которых постепенно сближается с Это способствует ДЛЯ напыляемого порошка. таковым снижению остаточных напряжений и повышению, следовательно, прочности покрытия.

На практике этот способ чаще применяют при изготовлении абразивного или алмазного инструмента. Иногда напыляют не подслои, а частицы абразива в металлической оболочке (металлизированные).

После подготовки поверхности необходимо как можно быстрее наносить покрытие, т.к., как показано выше, время отдыха отрицательно сказывается на адгезии.

В связи с развитием технологии напыления в контролируемой среде получили развитие методы термической активации подложек и покрытия путем предварительного нагрева и управления термическим воздействием плазменной струи на пятно напыления. Площадь поверхности изделия, через которую теплота двухфазной струи, состоящей из напыляемых частиц и плазмы, вводится в изделие, называют пятном нагрева. В общем случае его диаметр $d_{\rm H}$ не равен диаметру пятна напыления или ширине слоя покрытия B, получающегося за один проход. Соотношение $d_{\rm H}/{\rm B}$ разной фокусировки потока может меняться 3a счет сосредоточенности плазменной струи. Также следует отметить, что удельный тепловой поток распределен по пятну нагрева неравномерно: наибольшего значения он достигает в центре пятна, где плотнее поток частиц и интенсивнее термическое действие плазменной струи. Для уменьшения нагрева подложки при нанесении покрытий воздействие плазмы сводят к минимуму разделением в пространстве потока частиц и струи плазмы, путем ее отклонения в сторону от подложки. Отклонение достигается сдувом плазмы поперечным потоком газа или разделением потоков в специальном плазмотроне. Напротив, контролируемый нагрев подложки и напыляемого слоя покрытия осуществляется дозированной регулировкой мощности плазменной струи. Это позволяет регулировать физико-химическое взаимодействие материалов в момент формирования покрытия.

Описанный метод, хотя и позволяющий воздействовать не только на подложку, но и на все напыляемые слои покрытия, нельзя признать оптимальным для регулирования свойств покрытий, во-первых, из-за неравномерности термического воздействия по пятну напыления, что не может обеспечить равномерности свойств и структуры покрытия, вовторых, температура - это сравнительно инерционный параметр и поэтому не может использоваться для оперативного регулирования каких-либо зависящих от нее свойств покрытия.

Другой путь повышения качества покрытий - это увеличение температуры или энтальпии напыляемых частиц, поскольку прочность сцепления частиц с подложкой определяется температурой в контакте расплавленной частицы с твердой подложкой и временем кристаллизации частицы. Увеличить температуру контакта и время кристаллизации можно перегревом напыляемых частиц выше температуры плавления. Однако это может привести к испарению части материала и перегреву подложки в пятне напыления. Также метод, видимо, не позволяет поддерживать заданные параметры структуры покрытия.

Прочность покрытия можно увеличить, если вести напыление таким образом, чтобы наносимые частицы ложились на еще не остывшие частицы предыдущего слоя, которые называются термически активными.

Данный метод позволил бы увеличить прочность сцепления частиц в покрытии между собой (когезию). Однако он трудно осуществим на практике, поскольку, как показано, производительность плазменного напыления, при которой обеспечивалось бы попадание новой частицы на еще не остывшую предыдущую частицу, должна быть равной 5-10 кг/ч, что значительно (на 2-3 порядка) превышает реальные значения.

Для регулирования процесса плазменного напыления могут быть использованы пульсации плазменной струи, которые ΜΟΓΥΤ низкочастотными И высокочастотными. Низкочастотные пульсации обусловлены источником питания плазмотрона и эрозией электродов. Они вредны для процесса напыления, т.к. увеличивают нестабильность свойств покрытия на различных участках подложки. Их сводят к минимуму путем стабилизированных источников питания и применением плазмотронов с защитным покрытием электродов. Высокочастотные пульсации электрических параметров плазменной струи положительно влияют на процесс плазменного напыления, т.к. они вызывают колебания энтальпии, скорости и температуры плазменной струи с частотой от нескольких Гц до нескольких кГц, что увеличивает коэффициент теплопередачи.

Установлено, что высокочастотные пульсации напряжения дуги на 30-40 % увеличивают коэффициент использования порошка и коэффициент использования энергии струи, соответственно на 16-17 % и 40-43 % повышается нагрев порошка в струе плазмы.

Изложенное свидетельствует, что высокочастотные пульсации повышают производительность и экономичность процесса напыления, а также могут привести к повышению адгезии и когезии (увеличение q), но скорее всего их нецелесообразно использовать для получения покрытий с заданными структурными характеристиками.

Как показано выше, пористая структура существенно зависит от дистанции напыления. Однако использовать изменение дистанции

напыления для регулирования параметров структуры покрытия нецелесообразно, во-первых, из-за различного влияния дистанции на пористость и адгезионно-когезионные свойства и, во-вторых, из-за того, что выдерживание определенной дистанции напыления или ее изменение по заданному закону не устраняет разброса характеристик покрытия по его площади и толщине.

Изменение тока дуги оказывает противоположное влияние на адгезионно-когезионные свойства и интегральную характеристику пористости. Получение стабильной развитой пористой структуры и высокой адгезии покрытия путем изменения тока дуги также, повидимому, затруднительно.

Рассмотрим еще один параметр процесса плазменного напыления, который используется для регулирования характеристик покрытий — скорость напыляемых частиц.

Плазма служит источником энергии не только для плавления и распыления наносимого материала, но и для сообщения ему определенного запаса кинетической энергии. Частицы напыляемого материала ускоряются плазменной струей и с определенной скоростью соударяются с подложкой. Практика плазменного напыления показывает, что прочность сцепления напыляемых частиц с подложкой определяется не только контактной температурой и временем взаимодействия, но и скоростью частиц [20-23]. Выше уже отмечалось, что увеличение скорости частиц приводит к уменьшению пористости покрытия. Одновременно благодаря росту ударного и напорного давлений увеличиваются адгезия и когезия покрытия. Структура покрытия, нанесенного из мелких частиц, имеющих большую скорость, получается плотной и однородной. Прочности сцепления отдельных частиц и всего покрытия хорошо коррелируют.

Таким образом, увеличение скорости напыляемых частиц способствует ускорению и интенсификации физико-химических процессов в контакте, а следовательно, повышению прочности, плотности и улучшению других характеристик покрытия. Существует предел скорости частиц, при напылении со скоростями ниже этого предела прочность покрытия резко снижается. Медленные частицы сцепления деформируются и почти не растекаются при ударе, в результате чего контактные процессы в зоне взаимодействия нарушаются. Установлена [22, 23] минимальная скорость движения частицы, которая еще может вызвать ее деформацию и растекание при ударе о подложку: для металлов она равна 5-8 м/с, для оксидов -9-15 м/с.

В реальных процессах скорость частиц доходит до десятков м/с и может легко и плавно регулироваться расходом плазмообразующего и транспортирующего газов. Таким образом, остается возможность дополнительной корректировки условий напыления изменением тока дуги и дистанции напыления. Однако следует отметить, что увеличение скорости частиц в струе плазмы вызовет то, что они будут недостаточно проплавлены. Поэтому необходимо повышать энергетику плазменной струи, что отрицательно сказывается на долговечности плазмотрона. К тому же, как указывалось, рост скорости приводит к уменьшению пористости и повышению адгезии, что важно для износостойких покрытий, но геттерных и других пористых покрытий уже ДЛЯ необходимы неприемлемо (там высокие пористость адгезия). Следовательно, скорость частиц – это не универсальный параметр для управления важнейшими физико-механическими свойствами покрытий.

Необходимо также отметить следующее. В плазменной струе напыляемые частицы в зависимости от размера, плотности и формы приобретают различную скорость. Скорость частиц, даже если они имеют равные размеры и плотность, распределяется по пятну напыления

неравномерно. Особенно сильно изменяется скорость мелких частиц, у которых на периферии пятна она может быть в 3-5 раз ниже, чем в центральной области. У более крупных частиц перепад скорости меньше. Частицы размером менее 100 мкм, по сравнению с более крупными, быстрее набирают скорость в струе плазмы, но быстрее ее теряют. Наибольшую скорость частицы имеют на расстоянии 40-60 мм от сопла плазмотрона, в то время как оптимальные дистанции напыления находятся в диапазоне 90-120 мм. Таким образом, даже одинаковые частицы, движущиеся в плазменной струе от и на периферии, имеют разную скорость вследствие неодинаковых характеристик самой плазмы в этих зонах. Различие в скорости частиц, из которых формируется покрытие, свойств вызывает, соответственно, неоднородности структуры И напыленного покрытия.

Следовательно, изменением скорости частиц, движущихся в плазменной струе, также невозможно регулировать процесс формирования покрытия так, чтобы получались равномерные строго заданные структура и адгезия.

Таким образом, анализ существующих возможных способов регулирования процесса плазменного напыления показывает, что все они позволяют получать только интегральную характеристику покрытий в заданном диапазоне или получать требуемые адгезионно-когезионные характеристики. Получение строго определенной структуры и морфологии покрытия, значительной пористости при высоких значениях адгезии покрытия путем воздействия непосредственно на процесс напыления весьма затруднительно, поскольку электротехнологические режимы разнонаправленно влияют на указанные параметры [19].

Данное обстоятельство обусловливает необходимость исследования и разработки новых концептуальных подходов к решению задач получения плазменных покрытий с прогнозируемыми свойствами [24-28].

Литература

- 1. Технологическое обеспечение качества плазменных покрытий на основе применения комбинированных физико-технических методов активации поверхности / Н.В. Протасова, В.М. Таран, А.В. Лясникова и др. М.: Спецкнига, 2012. 350 с.
- 2. Кудинов В.В. Плазменные покрытия / В.В. Кудинов. М.: Наука, 1977. 184 с.
- 3. Кудинов В.В. Нанесение плазмой тугоплавких покрытий / В.В. Кудинов, В.М. Иванов. М.: Машиностроение, 1981. 192 с.
- 4. Андрианов А.В. Электроакустическое напыление тел вращения / А.В. Андрианов // Новое ультразвуковое технологическое оборудование и аппаратура, опыт их применения в промышленности: тез. докл. М.: ИМЕТ им. А.А. Байкова РАН, 1991. С. 47.
- 5. Бекренев Н.В. Повышение качества плазмонапыленных высокотвердых покрытий путем финишной ультразвуковой обработки их поверхности / Н.В. Бекренев, В.Н. Лясников // Гальванотехника и обработка поверхности 96: тез. докл. М.: РХТУ им. Д.И. Менделеева, 1996. С. 27.
- 6. Бекренев Н.В. Обработка твердых материалов с неоднородной структурой / Н.В. Бекренев, Ю.Н. Казаков, С.К. Сперанский // Автоматизация и современные технологии. 2004. № 5. С. 25-30.
- 7. Бекренев Н.В. Обеспечение качества деталей высокоточных изделий на основе формирования однородных структур покрытий и при их плазменном напылении и абразивно-алмазной обработке с воздействием ультразвука: автореф. дис... д-ра техн. наук / Н.В. Бекренев. Саратов, 2000. 40 с.
- 8. Борисов Ю.В. Современные тенденции в развитии газотермического напыления покрытий / Ю.В. Борисов // Пленки и покрытия-98: тез. докл. СПб.: Изд-во Политехн. ун-та, 1998. С. 14-19.

- 9. Газодинамическое напыление. Состояние и перспективы / А.П. Алхимов, С.В. Клинков, В.Ф. Косарев и др. // Пленки и покрытия-98: тез. докл. СПб.: Изд-во Политехн. ун-та, 1998. С. 20-25.
- 10. Газотермические покрытия из порошковых материалов: справочник / Ю.С. Борисов, Ю.А. Харламов, С.Л. Сидоренко и др. Киев : Наукова думка, 1987. 544 с.
- 11. Газотермические покрытия с повышенными эксплуатационными свойствами / Н.Л. Клинская, Е.П. Костогоров, М.В. Курылев и др. // Пленки и покрытия-98: тез. докл. СПб.: Изд-во Политехн. ун-та, 1998. С. 144-147.
- 12. Плазменная технология. Опыт разработки и внедрения / Сост. А.Н.Герасимов. – Л.: Лениздат, 1980.– 150 с.
- 13. Akira S. Plasma spraying to anti-abrasion parts / S. Akira // International Thermal Spraying Conference, ITSC-83, Essen, apr. 1983. P. 132-133.
- 14. Almond D.F. Novel Ways of Loocing at thermal spray Coatings / D.F. Almond, H. Reiter // Surfacing Journal. 1985. Vol. 16, N 1. P. 4-11.
- 15. Beyerlein L. Das Plasmaspritzen und seinetechnische Anwendund / L. Beyerlein // Hermsedorf techn. Mitt. − 1987. − Vol. 27. № 72. − S. 2300-2302.
- 16. Brandt O.C., Siegmann S., Isch H. Proc. of "UTSC-97", Indianopolis, USA, 1997. P. 875-876.
- 17. Non-destructive Testing of thermally sprayed Coatings by Using optical Holography to Receive Ultrasonic Waves / H.A. Crostack, A. Kruger, W.R. Fischer, H.D. Steffens // International thermal spraying Conference, ITSC-83, Essen, apr., 1983. P. 28-30.
- 18. The Production of Plasma Sprayed Coatings / V.A.Kolzunov, L.G.Kolzunova, A.K.Tsvetnikov et al. // V Russian-Chinese International

- Symposium "Advanced Materials and Processes", July 27 August 1, 1999. Baikalsk, Russia. Tomsk, 1999. P. 227.
- 19. Лясникова А.В. Технология создания многофункциональных композиционных покрытий / А.В. Лясникова, О.А. Дударева. М.: Спецкнига, 2012. 301 с.
- 20. Клубникин В.С. Сверхзвуковое плазменное напыление высокоплотных и прочных покрытий / В.С. Клубникин // Пленки и покрытия-98: тез. докл. СПб.: Изд-во Политехн. ун-та, 1998. С. 35-38.
- 21. Кудинов В.В. О температуре и скорости частиц при плазменной металлизации / В.В. Кудинов // Сварочное производство. 1965. № 8. С. 4-5.
- 22. Харламов Ю.А. Влияние скорости частиц на их кристаллизацию при газотермическом напылении / Ю.А. Харламов // Газотермическое напыление в промышленности СССР и за рубежом: тез. докл. Л.: ЛДНТИ, 1991. С. 21-22.
- 23. Харламов Ю.А. О роли скорости и температуры частиц при газотермическом напылении / Ю.А. Харламов // Физика и химия обработки материалов. 1983. N = 3. C. 15 20.
- 24. Mathematical Modeling of Stress in Plasma Coatings Used in Medicine/ A.V. Lyasnikova, V.M. Taran, O.A. Markelova et al. // Biomedical Engineering. 2013 Vol.47, No.3. P. 142-145.
- 25. Mel'nikova I.P. Physical bases of formation of nanostructured biocompatible coatings on medical implants / I.P. Mel'nikova, A.V. Lyasnikova, V.N. Lyasnikov // Russian Physics Journal. 2014. Vol. 56, No. 10. P.1190-1197.
- 26. Koshuro V.A. Composition and Structure of Coatings Formed on a VT16 Titanium Alloy by Electro-Plasma Spraying Combined with Microarc Oxidation / V.A. Koshuro, G.G. Nechaev, A.V. Lyasnikova // Technical Physics. –2014. Vol. 59. No. 10. P. 1570-1572.

- 27. The Effect of Impregnation with Nanostructured Boehmite on the Structure and Properties of Plasma Sprayed Ceramic Coatings / I.P. Mel'nikova, A.V. Lyasnikova, S.V. Veselukhina, V.S. Grinev, and E.L. Surmenko // Technical Physics Letters. 2014. Vol. 40. No. 10. P.845-848.
- 28. Properties of magnesium-substituted hydroxyapatite and the plasma coatings based on it / A.V. Lyasnikova, S.Y. Pichhidze, O.A. Dudareva, O.A. Markelova // Technical Physics Letters. 2015. Vol.60. Iss. 11. P.1725-1728.

ИСПОЛЬЗОВАНИЕ БИОМИМЕТИЧЕСКОГО ПОДХОДА ПРИ СОЗДАНИИ НОВЫХ ТИПОВ ЭНДОПРОТЕЗОВ С НАНОСТРУКТУРИРОВАННЫМИ ПОКРЫТИЯМИ НА ОСНОВЕ ЗАМЕЩЕННЫХ ТРИКАЛЬЦИЙФОСФАТОВ

О.А. Дударева¹, А.В. Лясникова¹, В.Н. Лясников¹, А.В. Лепилин², Ю.А. Барабаш³, С.П. Шпиняк³

¹Саратовский государственный технический университет имени Гагарина Ю.А., г. Саратов

²Саратовский государственный медицинский университет имени В.И. Разумовского, г. Саратов

³Саратовский научно-исследовательский институт травматологии и ортопедии, г. Саратов

Биомиметический подход в настоящее время применяется достаточно активно во многих сферах человеческой деятельности: от архитектуры до медицины [1-3]. Так, в работе [4] исследуются биомиметические принципы формообразования вертикальных ферм как новой типологии в агропромышленной архитектуре. Уровни

заимствования природных характеристик (организм, поведение, экосистема) и природные типологии (форма, конструкция, материал, процесс, функция) были рассмотрены А.Д. Гридюшко с соавт. на примерах концептуальных проектов вертикальных теплиц. В работах польских исследователей [5] биомиметический подход успешно использован при лечении пациентов с врожденной адентией.

Перечислять успехи биомиметики можно довольно долго, однако нам бы хотелось отметить наиболее близкие по тематике к нашему проекту работу уважаемых коллег из Сибири Ю.П. Шаркеева, С.Г. Псахье и др. [6], предлагающих использовать биомиметику формировании при поверхностных биоактивных слоев на сплавах магния на биодеградируемых имплантатах. Отличие нашей работы OT вышеназванной в том, что мы планируем применить биомиметический подход к созданию покрытий именно плазменным методом с применением дополнительных электрофизикохимических воздействий, и в том, что основным элементом покрытий будет являться замещенный различными элементами трикальцийфосфат (Ag, Cu, Zn, Mg с разной степенью замещения). Помимо того, что поверхность имплантата будет иметь скэффолд-структуру за счет нанесения покрытия, в структуру скэффолда будут вводиться активные компоненты типа ванкомицина, бетадина, протаргола и др. в зависимости от области применения (стоматология или заболевания Замещенный ортопедия, сопутствующие пациента). трикальцийфосфат в качестве основного компонента скэффолд-покрытий выбран не случайно. Во-первых, он близок по своим свойствам к широко известному гидроксиапатиту. Проведены исследования, в том числе Г.А. Воложиным (2005-2007 гг.) [7-9],подтвердившие, ЧТО трикальцийфосфат обладает повышенным остеоинтеграционным потенциалом (по сравнению с ГА) и может применяться для лечения адентии у больных остеопорозом посредством дентальной имплантации

конструкций, покрытых ТКФ. Во-вторых, его также можно подвергать модификации, а именно замещению, причем в различной степени. Известно, что в зависимости от степени замещения трикальцийфосфат может проявлять себя по-разному во время остеоинтеграции, особенно при замещении бактерицидными элементами типа Ag и Zn.

Авторы уже не первый год занимаются исследованием возможности применения замещенных гидроксиапатитов в составе биокомпозиционных наноструктурированных покрытий плазмонапыленных имплантатов различного назначения, поэтому опыт имеется большой и весьма успешный. Получены и опубликованы в рецензируемых журналах результаты, подтверждающие высокую эффективность замещенных ГА в костной хирургии [10-12]. На основании вышеизложенного, а также работ С.М. Баринова, В.С. Комлева, В.Э. Хон, М. Mastrogiacomo и др. [13-22], описывающих методику синтеза и медико-биологические характеристики замещенных ТКФ, можно заключить, что тема проекта весьма актуальна и коллектив авторов сможет реализовать все намеченное благодаря высокой квалификации, большому опыту выполнения проектов, мощным материаловедческой и медицинской базам, а также современному оборудованию.

На данном этапе синтезированы порошки металлозамещенных трикальцийфосфатов, получены покрытия на их основе, проводятся комплексные исследования структурно-морфологических и физико-химических характеристик.

Исследование выполняется при финансовой поддержке грантов $P\Phi\Phi H$ в рамках научных проектов N_{2} 16-08-01250 а и N_{2} 15-03-02767 а, проектной части государственного задания в сфере научной деятельности N_{2} 11.1240.2014/К от 17.07.2014г.

Литература

- 1. Joao F. Mano Biomimetic Approaches for Biomaterials Developmen / F. Joao. Wiley-VCH Verlag GmbH & Co. KGaA, 2012. 574 p.
- 2. Regenerative Medicine Applications in Organ Transplantation / Edited by:Giuseppe Orlando, 2014. 1001 p.
- 3.Biodegradable Systems in Tissue Engineering and Regenerative Medicine / Rui L. Reis, Julio San Roma. 2004. 568 p.
- 4. Гридюшко А.Д. Биомиметические принципы формообразования вертикальных ферм как новой типологии в агропромышленной архитектуре / А.Д. Гридюшко, Е.Г. Чентемирова // АМІТ. № 4 (25). 2013. С. 1-11.
- 5. Ящак-Малковска М. Междисциплинарный биомиметический подход к лечению пациентки с адентией 11 зубов / М. Ящак-Малковска, И. Витановска, М. Задурска // Dental Tribune. 2014. 6 с.
- 6. Биокомпозиты на основе кальцийфосфатных покрытий, наноструктурных и ультрамелкозернистых биоинертных материалов, их биосовместимость и биодеградация / Ю.П. Шаркеев, С.Г. Псахье, Е.В. Легостаева; отв. ред. Н.З. Ляхов. Томск: Издательский Дом Томск. гос. ун-та, 2014. 596 с.
- 7. Воложин Г.А. Применение винтовых дентальных имплантатов, покрытых трикальцийфосфатной керамикой, у больных с системным остеопорозом: автореф. дис... канд. мед. наук / Г.А. Воложин. М., 2006. 16 с.
- 8. Лясникова А.В. Биосовместимые материалы в дентальной имплантологии / А.В. Лясникова, Г.А. Воложин. Саратов: Сарат. гос. техн. ун-т, 2006.-124 с.
- 9. Лясникова А.В. Повышение остеоинтегративных свойств дентальных имплантатов путем электроплазменного напыления

- биокомпозиционных покрытий на основе b-трикальцийфосфата / A.B. Лясникова, Г.A. Воложин // Медлайн. 2007. Т.8. С. 366-376.
- 10. Экспериментальное исследование антимикробной активности гидроксиаппатита и наночастиц металлов *in vitro* / С.П. Шпиняк, А.П. Барабаш, А.В. Лясникова, А.В. Шунова // Современные проблемы науки и образования. 2015. № 6. URL: http://www.scienceeducation.ru/130-23099 (дата обращения: 26.11.2015).
- 11. Properties of magnesium-substituted hydroxyapatite and the plasma coatings based on it / A.V. Lyasnikova, S.Y. Pichhidze, O.A. Dudareva, O.A. Markelova // Technical Physics Letters. 2015. Vol.60. Iss. 11. P. 1725-1728.
- 12. Исследование свойств сереброзамещенного гидроксиапатита и биокомпозиционных наноструктурированных покрытий на его основе / А.В. Лясникова, В.Н. Лясников, О.А. Маркелова, О.А. Дударева, С.Я. Пичхидзе, И.П. Гришина // Медицинская техника. 2015. №5 (293). С.38-40.
- 13. Биосовместимые материалы: учеб. пособие / под ред. В. И. Севастьянова, М. П. Кирпичникова. М.: МИА, 2011. 560 с.
- 14. Баринов С.М. Биокерамика на основе фосфатов кальция / С.М. Баринов, В.С. Комлев [отв.ред. К.А. Солнцев]; Институт физико-химических проблем керамических материалов. М.: Наука, 2005. 204 с.
- 15. Влияние степени замещения кальция серебра в трикальцийфосфате на его биологические свойства in vitro / В.Э. Хон, Н.В. Загородний, В.С. Комлев и др. // Вестник травматологии и ортопедии имени Н.Н.Приорова. $-2013. \mathbb{N} \cdot 4. \mathbb{C}.23 28.$
- 16. Исследование биосовместимости и антибактериальных свойств in vivo серебросодержащего трикальцийфосфата / В.Э. Хон, Н.В. Загородний, В.Е. Мамонов и др. // Вестник травматологии и ортопедии имени Н.Н.Приорова. -2014. -№ 3. -C. 56-61.

- 17. Кубарев О.Л. Биоактивные керамические композиционные материалы в системе гидроксиапатит трикальцийфосфат / О. Л. Кубарев, В. С. Комлев, С. М. Баринов // Материаловедение. 2010. №2. С. 28-33.
- 18. Sinthesis and characterization of fluorapatit / E.Z. Kurmaev, S. Matsuya, S. Shin et al. // J. Mater. Sci.mater.Med. 2002. Vol.13. P. 33-36.
- 19. Reconstruction of extensive long bone defectsin sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate / M. Mastrogiacomo, A. Corsi, E. Francioso et al. // Tissue Eng. 2006. Vol.12. P.1261–1273.
- 20. Хенч Л. Биоматериалы, искусственные органы и инжиниринг тканей. Серия «Мир биологии и медицины» / Л. Хенч, Д. Джонс. М.: Техносфера, 2007. 304 с.
- 21. Principles of regenerative medicine / A. Atala, R. Lanza, J. Thompson, R. Nerem. Academic Press is an imprint of Elsevier, 1st ed., 2008. –1473 p.
- 22. Параскевич В.Л. Дентальная имплантология (2-е издание) / В.Л. Параскевич. М.: Медицинское информационное агентство, 2006. 399 с.

Научное издание

АКТУАЛЬНЫЕ ВОПРОСЫ БИОМЕДИЦИНСКОЙ ИНЖЕНЕРИИ

Сборник материалов V Всероссийской научной конференции для молодых ученых, студентов и школьников

Корректор Панина О.А. Компьютерная верстка и оформление: Дударева О.А. Перинская Е.Д. Маркелова О.А.

Подписано в печать 25.12.15

Бум. офсет. Усл. печ.л. 14,55 (15,75)

Тираж 150 экз. Заказ 5849

Издательство ООО «Прондо» 125319, Москва, ул. 1-я Аэропортовская, д.6, пом. VI, к.4 Отпечатано в типографии ООО «Прондо» 125319, Москва, ул. 1-я Аэропортовская, д.6, пом. VI, к.4

Формат 60х84 1/16 Уч.-изд.л. 14,0

9 785990 788541

ISBN 978-5-9907885-4-1