

Дополнительная профессиональная образовательная программа повышения квалификации в области СОЗДАНИЯ ВЫСОКОЭФФЕКТИВНЫХ НАНОСТРУКТУРИРОВАННЫХ ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ ДЛЯ ЩЕЛОЧНЫХ И ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

Заказчик

Фонд инфраструктурных и образовательных программ

Исполнитель

ФГБОУ ВО «Саратовский государственный технический университет имени Гагарина Ю.А.»

ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»

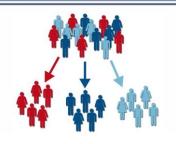
Проектная \ компания

ЛАО «Завод автономных источников тока»

Партнеры

«Национальный исследовательский технологический университет «МИСиС»

Существенную роль в развитии современных химических источников тока играет применение новых наноструктурированных материалов



Цель программы

подготовка слушателей к осуществлению трудовых функций в области создания высокоэффективных наноструктурированных электродных материалов для щелочных и литий-ионных аккумуляторов на основе изучения новейших мировых достижений в сфере нанотехнологий и освоения на практике технологических и конструкторских решений, непосредственно связанных с текущими производственными задачами.

Дополнительная профессиональная образовательная программа основана на практикоориетированном компетентностном подходе и вариативномодульном принципе построения образовательного процесса в соответствии с инновационными потребностями производств ХИТ с применением нанодисперсных оксидных и углеродных материалов.

Целевые группы обучающихся и образовательные результаты

ЦГ 1

инженеры-технологи по получению наноструктурированных оксидных электродных материалов для хранения и конверсии электрохимической энергии на основе сложных солей и комплексных оксидов

- ПК 1.1. Корректировать технологический процесс получения оксидных электродных наноматериалов согласно техническим требованиям;
- ПК 1.2. Разрабатывать программы технического контроля и осуществлять контроль качества оксидных электродных наноматериалов.

ЦГ 2

инженеры-технологи по модификации и применению углеродных наноматериалов или нанокомпозитов на их основе

- ПК 2.1. Корректировать технологический процесс получения углеродных электродных наноматериалов согласно техническим требованиям;
- ПК 2.2. Разрабатывать программы технического контроля и осуществлять контроль качества углеродных электродных наноматериалов.

ЦГ З

инженеры-конструкторы элементов XИТ, основанных на наноструктурированных материалах

- ПК 3.1. Разрабатывать конструкции ХИТ на основе наноструктурированных материалов согласно техническим требованиям на новые виды продукции;
- ПК 3.2. Разрабатывать программы испытаний и осуществлять испытания ХИТ на основе наноструктурированных материалов.

Структура образовательной программы

Общепрофессиональный цикл (80 ч.)

Включает электронный учебный курс «Современные тенденции в сфере применения наноматериалов и нанотехнологий на производствах ХИТ» (48 ч.)

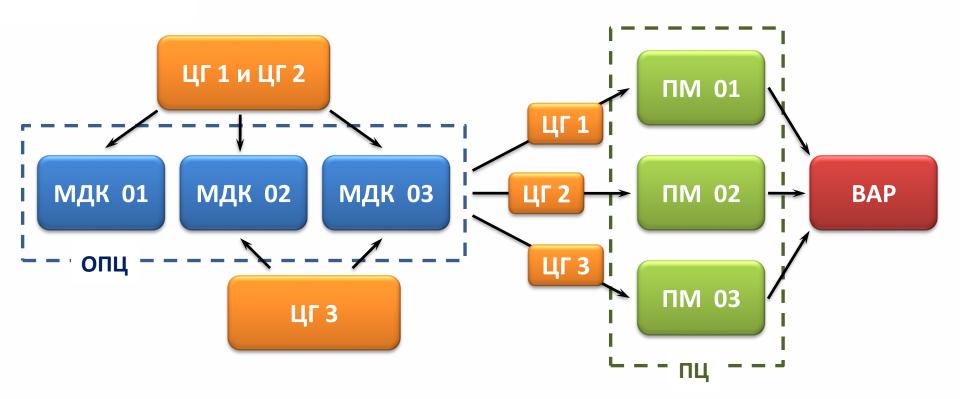
Профессиональный цикл

ПМ 01

Особенности синтеза и применения оксидных наноматериалов в технологии ХИТ (104 ч.)

ПМ 02

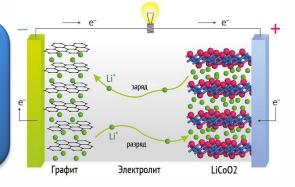
Углеродные наноматериалы в производстве химических источников тока (104 ч.)


ПМ 03

Конструирование элементов XИТ с применением нанодисперсных материалов и нанотехнологий (144 ч.)

Блок-схема освоения образовательной программы

Нормативный срок освоения программы составляет 244 ч. Форма реализации образовательной программы — очно-дистанционная


Общепрофессиональный цикл

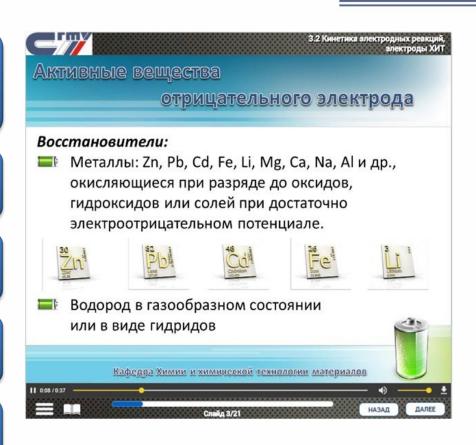
МДК 01. Методы получения и исследования нанодисперсных материалов (42 ч. всего, 26 ч. в формате ЭУК)

МДК 02. Физическая химия ХИТ, электрохимические методы исследования (28 ч. всего, 16 ч. в формате ЭУК)

МДК 03. Защита результатов интеллектуальной деятельности на промышленных производствах (10 ч. всего, 6 ч. в формате ЭУК)

ЭУК «Современные тенденции в сфере применения наноматериалов и нанотехнологий на производствах ХИТ»

«Современные тенденции в сфере применения наноматериалов и нанотехнологий на производствах ХИТ»

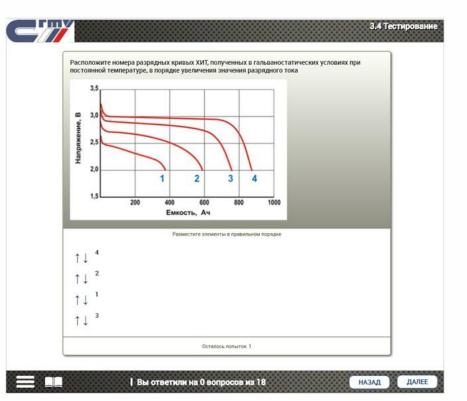

Основы получения нанодисперсных материалов

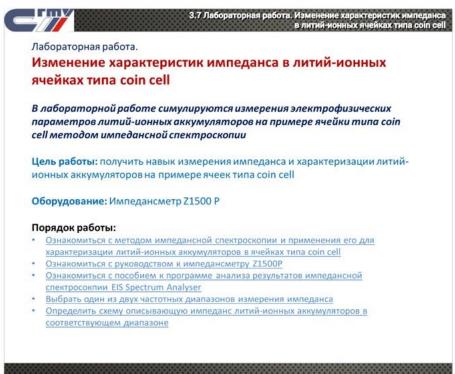
Методы исследования нанодисперсных материалов

Физическая химия ХИТ, электро-химические методы исследования

Защита результатов интеллектуальной деятельности на промышленных производствах

Структура ЭУК

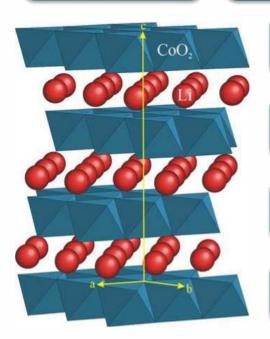



Лекционный материал ЭУК

ЭУК «Современные тенденции в сфере применения наноматериалов и нанотехнологий на производствах ХИТ»

Тестирование в рамках ЭУК

Лабораторная работа в рамках ЭУК



Особенности синтеза и применения оксидных наноматериалов в технологии XИТ

МДК 01.01

Оксидные наноматериалы в производстве ХИТ (68 ч.)

Тема 1. Оксидные материалы в технологии ЛИА, основные свойства, электрохимическое поведение, способы синтеза

Тема 2. Модификация активных масс НКА, современные тенденции в области создания оксидно-никелевого электрода

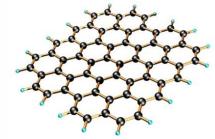
Тема 3. Разработка и получение активных масс электродных материалов ЛИА

Тема 4. Характеризация электрофизических свойств оксидных наноматериалов и электродных материалов на их основе

ПП 01

Практика (36 ч.)

ΠM 02


Углеродные наноматериалы в производстве химических источников тока

МДК 02.01

Особенности синтеза, структура и характеристики углеродных наноматериалов, применяемых в технологии ХИТ (68 ч.)

Тема 1. Классификация углеродных наноматериалов

Тема 2. Синтез и модификация углеродных наноматериалов

Тема 3. Композиты на основе углеродных наноматериалов

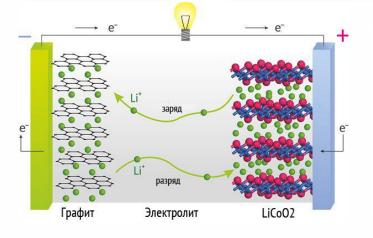
ПП 02

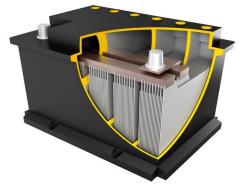
Практика (36 ч.)

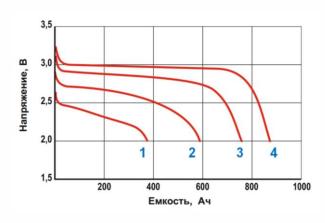
ΠM 03

Конструирование элементов XИТ с применением нанодисперсных материалов и нанотехнологий

МДК 03.01


Основные конструктивные особенности ХИТ, применение перспективных материалов в технологии ХИТ (64 ч.)


МДК 03.02


Тестирование ХИТ и батарей на их основе (44 ч.)

ПП 03

Практика (36 ч.)

Экспертиза разработанной программы

Экспертные заключения на этапе разработки программы

ПАО «Завод автономных источников тока»

Технический директор, д.т.н. Волынский В.В., заместитель главного конструктора, к.т.н. Забудьков С.Л.

Ткачев А.Г., д.т.н., проф., заведующий кафедрой «Техника и технологии производства нанопродуктов» ФГБОУ ВО «Тамбовский государственный технический университет»

Экспертные заключения на этапе апробации программы

ПАО «Завод автономных источников тока»

Технический директор, д.т.н. Волынский В.В.

АО ИФ «Орион-ХИТ»

Директор-главный конструктор, к.т.н. Федотов Д.Б.

АО «Электроисточник»

Главный конструктор, к.т.н. Ничволодин А.Г. Начальник цеха серебряно-цинковых аккумуляторных батарей, к.т.н. Зубцова К.С.

Разработчики и преподаватели программы

В состав разработчиков и преподавателей программы вошли ведущие ученые университета и организаций-партнеров с большим опытом преподавания.

Всего к разработке программы привлечено 15 человек, из них:

- 4 человека являются докторами наук, профессорами, в том числе 2 из них руководят профильными кафедрами;
- 13 человек имеют учёную степень;
- 2 человек представители профессиональной среды.

Возможности тиражирования образовательной программы

В рамках реализации проекта для продвижения образовательной программы проведены следующие мероприятия:

- Подготовка и распространение информационных материалов по образовательной программе на конференциях и выставках;
- Размещение информации об образовательной программе на информационно-образовательных платформах СГТУ имени Гагарина Ю.А.;
- Размещение информации об образовательной программе на информационно-образовательных платформах партнеров СГТУ имени Гагарина Ю.А.;
- Размещение в Электронном реестре российских и зарубежных образовательных учреждений и учебных программ Фонда инфраструктурных и образовательных программ www.startbase.ru.